Dit eindrapport behandelt het onderzoek van CDM@Airports, gericht op Collaborative Decision Making in de logistieke processen van luchtvrachtafhandeling op Nederlandse luchthavens. Dit project, met een looptijd van ruim twee jaar, is gestart op 8 november 2021 en geëindigd op 31 december 2023. HET PROJECT CDM@AIRPORTS OMVAT DRIE WERKPAKKETTEN: 1. Projectmanagement, dit betreft de algehele aansturing van het project incl. stuurgroep, werkgroep en stakeholdermanagement. 2. Onderzoeksactiviteiten, bestaande uit a) cross-chain-samenwerking, b) duurzaamheid en c) adoptie van digitale oplossingen voor datagedreven logistiek. 3. Management van een living lab, een ‘quadruple-helix-setting’ die fysieke en digitale leeromgevingen integreert voor onderwijs en multidisciplinair toegepast onderzoek.
MULTIFILE
With the increase of needs for controlling the passengers that use different modes of transport such as airports, ports, trains, or future ones as hyper loops, security facilities are a key element to be optimized. In the current study, we present an analysis of a security area within an airport with particular restrictions. To improve the capacity, different categories and policies were devised for processing passengers and we propose to adapt the system to these categories and policies. The results indicated that, by designing a proper category in combination with novel technology, it is possible to increase the capacity to values of 2 digits (in terms of passengers/day). As a proof-of-concept, we use a case study of an area within an airport in Mexico based on data and layout of early 2019.
DOCUMENT
This study presents a model-based analysis of the groundconnectivity performance of the future Santa Lucia-Mexico City multi-airport system. The plan of the currentgovernment is to connect the two airports by a dedicatedline, either by bus or other transport so that passengersand airlines can get the benefit of a coordinatedoperation. Performance indicators such as minimumconnecting time, vehicle utilization and passengerwaiting time are used to evaluate the future performance.Results reveal that when all passengers are allowed to usethe connection, a big number of vehicles are required forproviding a good level of service while in the case of arestricted use to only transfer passengers the operationwith Bus would have a good performance.
DOCUMENT
The constant growth of air traffic, especially in Europe, is putting pressure on airports, which, in turn, are suffering congestion problems. The airspace surrounding airport, terminal manoeuvring area (TMA), is particularly congested, since it accommodates all the converging traffic to and from airports. Besides airspace, airport ground capacity is also facing congestion problems, as the inefficiencies coming from airspace operations are transferred to airport ground and vice versa. The main consequences of congestion at airport airspace and ground, is given by the amount of delay generated, which is, in turn, transferred to other airports within the network. Congestion problems affect also the workload of air traffic controllers that need to handle this big amount of traffic.This thesis deals with the optimization of the integrated airport operations, considering the airport from a holistic point of view, by including operations such as airspace and ground together. Unlike other studies in this field of research, this thesis contributes by supporting the decisions of air traffic controllers regarding aircraft sequencing and by mitigating congestion on the airport ground area. The airport ground operations and airspace operations can be tackled with two different levels of abstractions, macroscopic or microscopic, based on the time-frame for decision-making purposes. In this thesis, the airport operations are modeled at a macroscopic level.The problem is formulated as an optimization model by identifying an objective function that considers the amount of conflicts in the airspace and capacity overload on the airport ground; constraints given by regulations on separation minima between consecutive aircraft in the airspace and on the runway; decision variables related to aircraft entry time and entry speed in the airspace, landing runway and departing runway choice and pushback time. The optimization model is solved by implementing a sliding window approach and an adapted version of the metaheuristic simulated annealing. Uncertainty is included in the operations by developing a simulation model and by including stochastic variables that represent the most significant sources of uncertainty when considering operations at a macroscopic level, such as deviation from the entry time in the airspace, deviation in the average taxi time and deviation in the pushback time. In this thesis, optimization and simulation techniques are combined together by developing two methods that aim at improving the solution robustness and feasibility. The first method acts as a validation tool for the optimized solution, and it improves the robustness of solution by iteratively fine-tuning some of the optimization model input parameters. The second method embeds the optimization in a simulation environment by taking full advantage of the sliding window approach and creating a loop for a continuous improvement of the optimized solution at each window of the sliding window approach. Both methods prove to be effective by improving the performance, lowering the total amount of conflicts up to 23.33% for the first method and up to 11.2% for the second method, however, in contrast to the deterministic method, the two methods they are not able to achieve a conflict-free scenario due to the effect of uncertainty.In general, the research conducted in this thesis highlights that uncertainty is a factor that affects to a large extent the feasibility of optimized solution when applied to real-world instances, and it, moreover, confirms that using simulation together with optimization has the potentiality toivdeal with uncertainty. The framework developed can be potentially applied to similar problems and different optimization solving methods can be adapted to it.Keywords: Optimization, Simulation, Integrated airport operations, Uncertainty
MULTIFILE
Airport infrastructure evolves alongside legacy systems and processes that limits the ability to fully realise the efficiency potential of costly renovations. Airports will continue to take advantage of current and future technologies. Nevertheless, for such systems to work as efficiently as possible, the passenger should play an active role. This paper analyzes the effect of a new type of emerging ’smart passenger’, one that cooperates to be enabled to use the most efficient processes for a seamless experience. The technological and behavioural enhancements areassessed with the simulation of two case studies: London City and Palma de Mallorca airports. Results indicate that the introduction of this type of passenger brings benefit in terms of level of service indicators not only to this type of passenger but also to the traditional ones (business, visitor and leisure). However,the impact differs depending on the type of airport and the proportion of ’smart passengers’.
DOCUMENT
Mexico transported in 2018 over 97.3 million passengers on its 77 airports in the country, from which 64 are international, with ana Amsterdam University of Applied Science (AUAS), Weesperzijde 190, 1097 DZ Amsterdam, Netherlandsaverage growth rate of 7.6% respects 2017. Particularity, Queretaro International Airport has shown a very significant growth,handling almost 95 thousand passengers in 2006 towards over one million passengers in 2018 according to Civil AviationAuthorities. Furthermore, in the last years Queretaro city and its suburbs have been developing into a strong industrial regiontogether with an aeronautical cluster; this is as an initiative of Mexican Government which gather more than 80 manufactureaeronautical enterprises such as General Electric, Bombardier, Grupo Safran and Aernova, amongst others. There is one of the Mexico transported in 2018 over 97.3 million passengers on its 77 airports in the country, from which 64 are international, with anbiggest Maintenance, Repairing and Over hall (MRO) service facilities of Latin America which belong to Aeromexico and Delta average growth rate of 7.6% respects 2017. Particularity, Queretaro International Airport has shown a very significant growth,Airlines. In addition, research, educational and training institutions supply high trained personnel to the industry. These unique handling almost 95 thousand passengers in 2006 towards over one million passengers in 2018 according to Civil Aviationcharacteristics of Queretaro airport make suitable for study, particularly an analysis of the main current and potential characteristics Authorities. Furthermore, in the last years Queretaro city and its suburbs have been developing into a strong industrial regionof the business development of the region through the growth model of the airport. Therefore, the work aims to highlight the potential together with an aeronautical cluster; this is as an initiative of Mexican Government which gather more than 80 manufactureaspects of the airport business model and the need to cope with it though an Airport Master Plan (AMP) based on a long-term aeronautical enterprises such as General Electric, Bombardier, Grupo Safran and Aernova, amongst others. There is one of thevision strategy towards 2040-2050. The approach integrates the international, national and regional trends related to aviation, and biggest Maintenance, Repairing and Over hall (MRO) service facilities of Latin America which belong to Aeromexico and Deltathe perspective of global growth as driver of connectivity for commercial and cargo aviation. It has been found that the airport has an Airlines. In addition, research, educational and training institutions supply high trained personnel to the industry. These uniqueinteresting and challenging portfolio of activities and market opportunities. Based on the economic activities in the region and the characteristics of Queretaro airport make suitable for study, particularly an analysis of the main current and potential characteristicsgood landside connectivity to Mexico City the passenger and cargo traffic at Queretaro Airport have good potential for growth of the business development of the region through the growth model of the airport. Therefore, the work aims to highlight the potentialeither via local based home carrier providing connections within Mexico and to major international destinations including long haul. aspects of the airport business model and the need to cope with it though an Airport Master Plan (AMP) based on a long-termThe airport has a solid infrastructure base, a long runway capable to accommodate almost all aircraft types for domestic and vision strategy towards 2040-2050. The approach integrates the international, national and regional trends related to aviation, andinternational traffic and cargo; MRO services, aircraft parts manufacturing facilities, an aviation university as well as the the perspective of global growth as driver of connectivity for commercial and cargo aviation. It has been found that the airport has andevelopment of commercial services for passengers and in the surrounding communities. Queretaro Airport is capable to move fast interesting and challenging portfolio of activities and market opportunities. Based on the economic activities in the region and thebased on its current portfolio of activities, facilities, and scheduled modifications of the terminal, etc. We can assume that airlines good landside connectivity to Mexico City the passenger and cargo traffic at Queretaro Airport have good potential for growthwill be looking for new opportunities to serve the Mexican market at large and the Mexico City area in particular. Dedicated airlines either via local based home carrier providing connections within Mexico and to major international destinations including long haul.marketing, to speed up development of landside commercial services (hotel, landside transportation to Mexico City) will position The airport has a solid infrastructure base, a long runway capable to accommodate almost all aircraft types for domestic andQueretaro Airport to benefit from this new development.international traffic and cargo; MRO services, aircra
DOCUMENT
Air transportation has grown in an unexpected way during last decades and is expected to increase even more in the next years. Traffic growth tendencies forecast an expansion in the demand and greater aviation connectivity, but also higher workload to the different airspace users, especially for airport and services. Therefore, it is essential to employ strategies designed to use efficiently valuable corporate resource. Airport authorities around the world are investing in large capital projects, including new or improved runways, terminal expansions, and entirely new airports. However, this effort is sometimes limited due to their geographic location. In this work, two main objectives are pursued: first, to highlight the importance of the industry by exposing the current situation and future trends all over the world focusing in the Mexican industry; and second, to introduce a simulation model which can be used as a decision making tool for the upcoming demand. The analysis of the scenarios illustrates how to develop strategies to cope with the different airspace user's needs.
MULTIFILE
Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators.
DOCUMENT
Airport capacity, expressed as the maximum number of air traffic movements that can be accommodated during a given period of time under given conditions, has become a hard constraint to the air transportation, due to the scarce amount of resources on the ground and restrictions in the airspace. Usually the problem of capacity at airports is studied separating airspace operations from ground operations, but it is evident that the two areas are tied to each other. This work aims at developing a simulation model that takes into account both airspace and ground operations. The approach used is a divide and conquer approach, which allows the combination of four different models. The four models refer to the airside, and airspace operations. This approach allows to evaluate the system from diffrent angles depending on the scope of the study, the results show the analytic potential of this approach.
DOCUMENT
The aeronautical industry is expanding after a period of economic turmoil. For this reason, a growing number of airports are facing capacity problems that can sometimes only be resolved by expanding infrastructure, with the inherent risks that such decisions create. In order to deal with uncertainty at different levels, it is necessary to have relevant tools during an expansion project or during the planning phases of new infrastructure. This article presents a methodology that combines simulation approaches with different description levels that complement each other when applied to the development of a new airport. The methodology is illustrated with an example that uses two models for an expansion project of an airport in The Netherlands. One model focuses on the operation of the airport from a high-level position, while the second focuses on other technical aspects of the operation that challenge the feasibility of the proposed configuration of the apron. The results show that by applying the methodology, analytical power is enhanced and the risk of making the wrong decisions is reduced. We identified the limitations that the future facility will have and the impact of the physical characteristics of the traffic that will operate in the airport. The methodology can be used for tackling different problems and studying particular performance indicators to help decision-makers take more informed decisions.
DOCUMENT