Purpose: Accurate measurement of body temperature is important for the timely detection of fever or hypothermia in critically ill patients. In this prospective study, we evaluated whether the agreement between temperature measurements obtained with TAT (test method) and bladder catheter-derived temperature measurements (BT; reference method) is sufficient for clinical practice in critically ill patients. Methods: Patients acutely admitted to the Intensive Care Unit were included. After BT was recorded TAT measurements were performed by two independent researchers (TAT1; TAT2). The agreement between TAT and BT was assessed using Bland-Altman plots. Clinical acceptable limits of agreement (LOA) were defined a priori (<0.5°C). Subgroup analysis was performed in patients receiving norepinephrine. Results: In total, 90 critically ill patients (64 males; mean age 62 years) were included. The observed mean difference (TAT-BT; ±SD, 95% LOA) between TAT and BT was 0.12°C (-1.08°C to +1.32°C) for TAT1 and 0.14°C (-1.05°C to +1.33°C) for TAT2. 36% (TAT1) and 42% (TAT2) of all paired measurements failed to meet the acceptable LOA of 0.5°C. Subgroup analysis showed that when patients were receiving intravenous norepinephrine, the measurements of the test method deviated more from the reference method (p = NS). Conclusion: The TAT is not sufficient for clinical practice in critically ill adults
LINK
Improving estrus detection accuracy could improve sow conception rates,leading to higher production efficiency. Current observation-based estrusdetection practices are labor intensive and less accurate. Around estrus, bodytemperature and activity change. Therefore in this study a telemetric monitoringsystem for body temperature and activity was tested. Firstly Templant2 sensors(TeleMetronics) were validated under lab conditions for temperatures from 35°Cto 45°C, using a water basin with a Julabo heater and a P600 thermometer.Activity measurements were validated with the sensors attached to a stick,simulating sow movements. Secondly, sensors were attached externally to 4gilts and 4 sows for 30 minutes, testing functionality. Thirdly, activity of sowswas recorded manually for 3 days around estrus. Results showed that under labconditions temperature results of sensors, heater and thermometer were highlycorrelated (linear regression, R2=0,96; slope 1,1). Simulated activitiescorresponded consistently with peaks in sensor values. Activity was measuredreliably with the sensor attached externally to the sows. On the farm, sowsshowed more activity (manual observations, P<0.05 for standing up, lying down,sitting down and walking) the day before insemination. We conclude thatmonitoring activity and body temperature is a promising tool for estrousdetection in sows.
LINK
Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.
DOCUMENT
Over 40% of nursing home residents in the Netherlands are estimated to have visual impairments. In this study, light conditions in Dutch nursing homes were assessed in terms of horizontal and vertical illuminances and colour temperature. Results showed that in the seven nursing homes vertical illuminances in common rooms fell significantly below the 750 lx reference value in at least 65% of the measurements. Horizontal illuminance measurements in common rooms showed a similar pattern. At least 55% of the measurements were below the 750 lx threshold. The number of measurements at the window zone was significantly higher than the threshold level of 750 lx. Illuminances in the corridors fell significantly below the 200 lx threshold in at least three quarters of the measurements in six of the seven nursing homes. The colour temperature of light fell significantly below the reference value for daylight of 5000 K with median scores of 3400 to 4500 K. A significant difference in colour temperature was found between recently constructed nursing homes and some older homes. Lighting conditions of the examined nursing homes were poor. With these data, nursing home staff have the means to improve the lighting conditions, for instance, by encouraging residents to be seated next to a window when performing a task or during meals.
DOCUMENT
From the article: "A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes (nanogap IDEs) with gaps from 50–250 nm have been designed and processed at full wafer-scale. These nanogap IDEs were then coated with poly(4-vinyl phenol) as a sensitive layer to form gas sensors for acetone detection at low concentrations. These acetone sensors showed excellent sensing performance with a dynamic range from 1000 ppm to 10 ppm of acetone at room temperature and the observed results are compared with conventional interdigitated microelectrodes according to our previous work. Sensitivity and reproducibility of devices are discussed in detail. Our approach of fabrication of nanogap IDEs together with a simple coating method to apply the sensing layer opens up possibilities to create various nanogap devices in a cost-effective manner for gas sensing applications"
MULTIFILE
Thermal comfort is determined by the combined effect of the six thermal comfort parameters: temperature, air moisture content, thermal radiation, air relative velocity, personal activity and clothing level as formulated by Fanger through his double heat balance equations. In conventional air conditioning systems, air temperature is the parameter that is normally controlled whilst others are assumed to have values within the specified ranges at the design stage. In Fanger’s double heat balance equation, thermal radiation factor appears as the mean radiant temperature (MRT), however, its impact on thermal comfort is often ignored. This paper discusses the impacts of the thermal radiation field which takes the forms of mean radiant temperature and radiation asymmetry on thermal comfort, building energy consumption and air-conditioning control. Several conditions and applications in which the effects of mean radiant temperature and radiation asymmetry cannot be ignored are discussed. Several misinterpretations that arise from the formula relating mean radiant temperature and the operative temperature are highlighted, coupled with a discussion on the lack of reliable and affordable devices that measure this parameter. The usefulness of the concept of the operative temperature as a measure of combined effect of mean radiant and air temperatures on occupant’s thermal comfort is critically questioned, especially in relation to the control strategy based on this derived parameter. Examples of systems which deliver comfort using thermal radiation are presented. Finally, the paper presents various options that need to be considered in the efforts to mitigate the impacts of the thermal radiant field on the occupants’ thermal comfort and building energy consumption.
DOCUMENT
In this article I explore a perspective that the philosophical concepts of German phenomenologist Hermann Schmitz (*1928) may open up for thinking about the growing practice of wearing textile integrated electronics directly on the body. It is my contention that traditional conceptions of wearing (non-technological) clothing on the body fail to capture the changed situation and I hence suggest a paradigm shift is needed to think about the novel scope of affects that can be related to body-technology communication. Schmitz’s concepts of the perceptive felt body, corporeal communication and emotions as atmospheres perceived as outside, on or close to the ‘material’ body will be elaborated upon to investigate how they may enhance existing notions of bodily perception and human-technology relations. The case study used for this philosophical investigation is found in the Tactile Sleeve for Social Touch, a wearable created by Elitac, HvA and UTwente, which allows sensations of stroking, tapping and touching to be communicated from one person to another across a distance.
MULTIFILE
Non-invasive, rapid, on-site detection and identification of body fluids is highly desired in forensic investigations. The use of fluorescence-based methods for body fluid identification, have so far remain relatively unexplored. As such, the fluorescent properties of semen, serum, urine, saliva and fingermarks over time were investigated, by means of fluorescence spectroscopy, to identify specific fluorescent signatures for body fluid identification. The samples were excited at 81 different excitation wavelengths ranging from 200 to 600 nm and for each excitation wavelength the emission was recorded between 220 and 700 nm. Subsequently, the total emitted fluorescence intensities of specific fluorescent signatures in the UV–visible range were summed and principal component analysis was performed to cluster the body fluids. Three combinations of four principal components allowed specific clustering of the body fluids, except for fingermarks. Blind testing showed that 71.4% of the unknown samples could be correctly identified. This pilot study shows that the fluorescent behavior of ageing body fluids can be used as a new non-invasive tool for body fluid identification, which can improve the current guidelines for the detection of body fluids in forensic practice and provide the robustness of methods that rely on fluorescence.
MULTIFILE
Plasmid-mediated dissemination of antibiotic resistance among fecal Enterobacteriaceae in natural ecosystems may contribute to the persistence of antibiotic resistance genes in anthropogenically impacted environments. Plasmid transfer frequencies measured under laboratory conditions might lead to overestimation of plasmid transfer potential in natural ecosystems. This study assessed differences in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings were performed under optimal laboratory conditions (rich LB medium and 37°C) and environmentally relevant temperatures (25, 15 and 9°C) or nutrient regimes mimicking environmental conditions and limitations (synthetic wastewater and soil extract). Under optimal nutrient conditions and temperature, two recipients yielded high transfer frequencies (5 × 10–1) while the conjugation frequency of the third strain was 1000-fold lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer frequencies, albeit all three strains conjugated under all the tested temperatures. Low nutritive media caused significant decreases in transconjugants (−3 logs for synthetic wastewater; −6 logs for soil extract), where only one of the strains was able to produce detectable transconjugants. Collectively, this study highlights that despite less-than-optimal conditions, fecal organisms may transfer plasmids in the environment, but the transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions.
DOCUMENT
Survivors of father–daughter incest often suffer from complex trauma and sensory insensitivity, making it difficult to decipher the sensations in the body and experience body ownership, self-location and agency. This case study illustrates how sensory focused, Trauma-Centred Developmental Transformations can help restore or develop a bodily self, desensitize fear-based schemas, revise deeply buried beliefs and extend repertoire.
DOCUMENT