Dit boek is het resultaat van het SIA Raak MKB project “Biocomposieten voor civiele en bouwkundige toepassingen; Biobased brug”. Het is geschreven voor bedrijfsleven en studenten van het MBO, het HBO en de universiteiten. Het project leverde een haalbaarheidsonderzoek van een volledig biocomposieten voetgangersbrug. Materialenonderzoek bij Inholland Composites en stijfheid en sterkte berekeningen toonden aan dat een volledig biocomposieten voetgangersbrug haalbaar was. De Dommelbrug is met succes door ruim 100 studenten gebouwd.
DOCUMENT
Positioning paper bij de inauguratie van Vincent Voet als lector Circular Plastics.
DOCUMENT
Polymeren, waaronder plastics, kennen we allemaal uit ons dagelijks leven. Van de plastic draagtas tot computeronderdelen en kopjes. Allemaal worden deze polymeren vervaardigd uit aardolie en afgeleide producten. De producten zijn zeer nuttig en breed toepasbaar, mede door de gunstige eigenschappen zoals warmteweerbaarheid, stevigheid en waterdichtheid. Daarentegen kennen polymeren ook een keerzijde, zoals het niet of moeilijk afbreekbaar zijn in de natuurlijke omgeving en de nadelen van het gebruik van fossiele bronnen: hun eindigheid en de ongecontroleerde emissie van broeikasgassen die verband houdt met klimaatverandering. Dit is een zichtbaar probleem bij onder meer De Plasticsoep, waar geen of beperkte afbraak plaatsvindt van plastics in de oceaan. De zoektocht naar alternatieven is daarom volop aan de gang.
DOCUMENT
Polymeren, waaronder plastics, kennen we allemaal uit ons dagelijks leven. Van de plastic draagtas tot computeronderdelen en kopjes. Allemaal worden deze polymeren vervaardigd uit aardolie en afgeleide producten. De producten zijn zeer nuttig en breed toepasbaar, mede door de gunstige eigenschappen zoals warmteweerbaarheid, stevigheid en waterdichtheid. Daarentegen kennen polymeren ook een keerzijde, zoals het niet of moeilijk afbreekbaar zijn in de natuurlijke omgeving en de nadelen van het gebruik van fossiele bronnen: hun eindigheid en de ongecontroleerde emissie van broeikasgassen die verband houdt met klimaatverandering. Dit is een zichtbaar probleem bij onder meer De Plasticsoep, waar geen of beperkte afbraak plaatsvindt van plastics in de oceaan. De zoektocht naar alternatieven is daarom volop aan de gang.
DOCUMENT
In de zomer van 2005 drongen Amerikaanse wetenschappers aan op de ontwikkeling van een nationale strategie op het terrein van materials science & engineering (MSE). De National Research Council (NRC) van de National Academy of Sciences (NAS) had kort aarvoor het rapport ’Globalization of Materials R&D: Time for a National Strategy’ uitgebracht. In dit rapport ging het om een antwoord op de vraag ‘Waar staan de VS in vergelijking met de rest van wereld?’, ofwel ‘Zijn de VS nog steeds leidend op de verschillende materiaalgebieden of nemen andere landen deze positie over?’ De snelle opkomst van het materialenonderzoek in landen, zoals China en het groeiend onderzoek in Europa vormen immers voor de VS een geduchtere concurrentie dan ooit. Volgens dit rapport is de positie in composieten en superlegeringen dan ook zodanig afgenomen dat Amerika nog nauwelijks de vruchten kan plukken van de elbelovende ontwikkelingen op dit terrein. Ook de positie op het gebied van katalysatoren is vrijwel geheel verdwenen. Vaak is de kennis nog wel aanwezig maar de kracht om die kennis commercieel te benutten ontbreekt. Bedrijven kunnen dan de academische kennis niet meer omzetten in een winstgevende toepassing. Hoewel het vakgebied materials science & engineering in de VS niet meer over de hele linie aan de top van de wereld staat, is de Amerikaanse positie op de meeste terreinen van de materiaalwetenschappen onbetwist. Recente hoogtepunten zijn ruimschoots voorhanden, zoals het maken van grafeen, de verschillende toepassingen van anokoolstofbuisjes, de ontdekking van metamaterialen en het nabootsen van verschijnselen uit de natuur zoals de hechting van de poten van de gekko aan de ondergrond. De National Science Foundation speelt een belangrijke bij de financiering en valorisatie van onderzoek. Verschillende programma’s, waaronder het Materials Science Research and Engineering Centers programma, spelen een grote rol in kennisoverdracht naar bedrijfsleven en maatschappij. Michiel Scheffer is, tijdens zijn vijf maanden verblijf, in de Verenigde Staten zelf op zoek gegaan naar de Amerikaanse positie en heeft met veel onderzoekers gesproken. Ook hij heeft ontdekt dat er nog vele hoogtepunten en sterkten in het Amerikaanse materialenonderzoek te vinden zijn, waarvan hij in deze bundel enthousiast en gedetailleerd verslag doet.
MULTIFILE
Biopolymeren vormen een potentieel interessant alternatief voor conventioneel op olie gebaseerde polymeren, omdat zij geen fossiele grondstoffen gebruiken voor de productie. Daarentegen is het productie procedé afhankelijk van energie en toevoegmiddelen die weer bijdragen aan het verbruik van energie en de emissie van onder andere broeikasgassen en zijn de grondstoffen van belang, zoals het gebruik van reststromen uit de afvalverwerking of andere biomaterialen. Binnen het project Circulaire Biopolymeren Waardeketens zijn meerdere productiemethoden bestudeerd om polyhydroxyalkanoaten (PHAs) te maken uit organische reststromen: GFT en afvalwaterslib, een bijproduct uit de afvalwaterzuivering. Productie en extractie van PHAs kan middels diverse routes. In het project zijn meerdere extractieroutes bestudeerd betreffende hun mogelijkheden. Als onderdeel van het project is een levenscyclusanalyse (LCA) gedaan om de milieu-impact van de productie van de biopolymeren in kaart te brengen.
DOCUMENT
De overgang van traditionele textiel naar biotextiel kan omschreven worden als een paradigmaverandering, in grote lijnen parallel aan de komst van biotechnologie. Dit wordt vaak geassocieerd met begrippen als creatieve destructie, waarbij nieuwe innovatieve industrieën de bestaande achterhaald doen raken. Maar biopolymeren zijn er altijd al geweest. Wat opvalt, is hier niet het radicale van de verandering, maar de mogelijkheid om nieuwe technologieën en materialen toe te passen en te reageren op vragen van de markt en mondiale omstandigheden. In dit rapport wordt een overzicht gegeven van het gebruik van de meest voorkomende biopolymeren in geotextieltoepassingen, dus toepassingen in bijvoorbeeld de weg- en waterbouw of in de agro-industrie. Biopolymeren worden als volgt gedefinieerd: ‘polymeren die worden geproduceerd uit natuurlijke hernieuwbare grondstoffen’. Dit zijn bijvoorbeeld: • Duurzame beschikbare (delen van) planten en dieren (ook aquatische biomassa). • Primaire residuen (bermgras, houtafval, ...). • Secundaire residuen (bietenpulp, bierborstel, ...). • Tertiaire residuen (dierlijk vet, GFT, ...). Biobased houdt in dat een polymeer uit natuurlijke, dierlijke of hernieuwbare grondstof bestaat. Dit geeft een grotere onafhankelijkheid van de klassieke grondstofproducenten, zoals de aardolie- en gasproducenten. Echter moet bedacht worden dat er weer een afhankelijkheid van andere grondstofproducenten kan ontstaan. Natuurlijke grondstoffen zijn de meest bekende. Er is bijvoorbeeld cellulose uit katoen, vlas van de vlasplant of brandnetelvezel van de brandnetel. Onder dierlijke grondstoffen verstaan we onder andere chitosan uit schaaldieren. Een hernieuwbare grondstof is bijvoorbeeld zetmeel/suiker voor PLA (polymelkzuur. Deze biopolymeren worden besproken om duidelijk te maken welke soorten wel of niet geschikt zijn voor verschillende toepassingen in geotextiel. Een verder onderscheid wordt wel gemaakt op basis hun ‘end of life’: biodegradeerbaar en composteerbaar. Een materiaal is biodegradeerbaar wanneer de afbraak het gevolg is van de actie van micro-organismen (zwammen, bacteriën), waardoor het materiaal uiteindelijk wordt omgezet in water, biomassa, CO2 en/of methaan, ongeacht de tijd die hiervoor nodig is. Composteerbaar wil zeggen dat stoffen worden afgebroken bij het composteren met een snelheid die vergelijkbaar is met die van andere bekende composteerbare materialen (bijvoorbeeld groenafval). Met andere woorden: een materiaal is composteerbaar wanneer het afbraakproces compatibel is met de omgevingsomstandigheden van een huishoudelijke of industriële composteerinstallatie, zoals temperatuur, vochtigheid en tijd. Hierbij dient te worden opgemerkt dat composteerbare materialen biodegradeerbaar zijn, maar niet alle biodegradeerbare materialen zijn composteerbaar. In de geotextiel bestaan twee grote verschillen in toepassingen. De permanente of houdbare toepassingen en de degradeerbare toepassingen. Oeverbescherming is een goed voorbeeld van een degradeerbaar product. Een nieuwe oever bestaat voor een groot deel uit los zand. Om ervoor te zorgen dat de oever door bijvoorbeeld erosie niet verdwijnt, worden er kokosmatten gebruikt voor versteviging. Op deze kokosmatten vormt zich op den duur een nieuw ecosysteem. De kokosmatten zullen dan na een aantal jaren composteren zonder vervuilende grondstoffen in de aarde achter te laten. Maar in bijvoorbeeld wegen of bij viaducten, wordt versteviging toegepast met als doel langdurig functiebehoud van het polymeer. In dit rapport is een tabel opgenomen met daarin de behandelde biopolymeren met de belangrijkste eigenschappen. Zo kan bijvoorbeeld een geotextiel producent de meest optimale keuze maken voor de grondstoffen voor haar producten. Ook is een figuur opgenomen, waarin een verzameling aan geotoepassingen en biopolymeren (met degradeerbaar/biobased labels) in een overzicht is gezet. Biopolymeren kunnen,
MULTIFILE
Several 2-nitroalkyl polysaccharide ethers (from pullulan (1), guar (2), agarose (3), inulin (4), cellulose (5), Na-α-polyglucuronate (6) and hydroxyethyl cellulose (7)) were synthesized by reaction with 2-nitro-1-alkenes (2-nitro-1-propene and 2-nitro-1-butene) formed in situ from 2-nitroalkyl acetates. Moderate to high efficiencies are obtained in concentrated aqueous solution/suspension for addition to 1-4 and 7. Analysis of this new class of polysaccharide derivatives with the aid of labeled 2-nitropropyl-2-13C pullulan revealed that the nitrogroup is a mixture of the nitroalkane and nitronic acid tautomers. Grafting of nitroalkenes is observed and, to a lesser extent, additional reactions of the nitro group (formation of carbonyl, oxime and allyl groups) take place. Reduction of 2-nitroalkyl polysaccharide ethers with Na2S2O4or Na2S2O4/NaBH4leads to complex polysaccharide ethers. The products obtained are most likely mixtures of starting material, nitroso compounds, hydroxylamines, hydroxypropyl ethers and sulfamates.
LINK
In het dagelijks leven hebben we voortdurend met verschillende plastics te maken. Overal om ons heen komen we plastics tegen. Denk bijvoorbeeld aan verpakkingsmaterialen, flessen, flacons, kratten, tapijten en plastic draagtassen. Een leven zonder kunststoffen is in onze huidige maatschappij vrijwel ondenkbaar geworden. In 2014 werd er volgens Plastics Europe [1] wereldwijd maar liefst 311.000.000 ton aan kunststoffen geproduceerd, in 1950 was dit nog slechts 1.700.000 ton. Vanaf 1950 stijgt de wereldwijde productie van kunststoffen met gemiddeld 9% per jaar. Bij de huidige productiecapaciteit komt dit volgens Plastics Europe neer op gemiddeld 40 kg/jaar per hoofd van de wereldbevolking! Naar verwachting zal het gebruik van plastics verder toenemen naar gemiddeld 87 kg/jaar per hoofd van de wereldbevolking in het jaar 2050. In Nederland ligt het verbruik momenteel op gemiddeld 126 kg per inwoner. Maar volgens prognoses van VLEEM (Very Long Term Energy Environment Model) [2] zal dit groeien naar gemiddeld 220 kg per inwoner in 2050!! De toenemende vraag naar plastics wordt mede veroorzaakt omdat plastics op zich een gemakkelijk te verwerken materiaal is. Plastics zijn relatief goedkoop, hebben een lage specifieke dichtheid (t.o.v. bijvoorbeeld metalen), en zijn snel en gemakkelijk verwerkbaar.
DOCUMENT
Grondstoffen schaarste is een van de grootste uitdagingen voor de textielindustrie. Dit wordt veroorzaakt door afnemende of beperkte voorraden grondstoffen, olie, water en land terwijl de vraag toeneemt o.a. door toenemende welvaart en industriële activiteit zoals bijv. in China en India. Dit is een wereldwijd verschijnsel en het leidt tot meer onderlinge afhankelijkheden tussen landen en regio’s.Er zullen dan ook maatregelen genomen moeten worden om hier een goed antwoord op te vinden en de volgende actielijnen moeten in gang worden gezet: Betere/meer efficiënt productie- en distributie keten Efficiëntere productiesystemen zoals digitale processen Beperking van grondstoffengebruik en recycling van materialen Vervangen van traditionele grondstoffen door nieuwe minder belastende materialen. Aanpassen van het ontwerp proces, rekening houdend met recycling en gerecyclede materialen. De problemen van de industriële textielketen en de impact ervan op het milieu worden niet alleen veroorzaakt door inefficiënte en vervuilende processen maar ook door een zeer ondermaatse order- en productieketen. Duurzaamheid is allang het stadium van trend ontgroeid. Het is een keiharde noodzaak geworden om op onze begrensde aarde te overleven. De focus ligt dan ook op het belang voor de toekomstige generaties. Echter in de driehoek People – Planet – Profit (door sommigen ook ingevuld als Prosperity) is het van groot belang om te optimaliseren binnen deze driehoek. Zonder het aspect profit mee te wegen gebeurt er niets. Recycling is een belangrijk thema om bovengenoemde problemen aan te pakken. Al tijdens het ontwerp van producten kan al rekening gehouden worden met recycling. Door materiaalkeuze kan verlenging van de levens- of gebruiksduur verkregen worden, bijv. door minder slijtage of sterkere materialen te gebruiken. Dit is een reële optie. Doel is dan om al tijdens het ontwerp van textiele producten, incl. de aan te brengen functies en gebruik een product zodanig vormgeven dat hergebruik een goede optie is. Biopolymeren zijn materialen met een natuurlijke herkomst en zijn al in gebruik sinds mensenheugenis. Vooral in de textielindustrie is het gebruik van biomaterialen natuurlijk allang gemeengoed, denk aan katoen, wol, zijde maar ook aan geregenereerde cellulose als bijv. Lyocell. Het gebruik van biopolymeren in de textielindustrie verlaagt de druk op schaarse. Op olie gebaseerde synthetische materialen, of kostbare grondstoffen. Aantoonbaar duurzaam vereist onderbouwing door rationele analyse om greenwashing tegen te gaan.Duurzaam vereist ook een keten benadering: de gehele keten speelt hierin mee dus ook de textielproducenten. Hiervoor is het nodig om een analyse te maken van de inzet van huidige materialen en te onderzoeken op welke wijze die vervangen kunnen worden door biobased materialen. Digitaliseren van de textielketen lijktook een methode om de duurzaamheid van de keten te verbeteren. Made-to-measure en individualisatie zijn belangrijke drivers voor de digitalisering van de textielketen. Goedkope bodyscanners en de beschikbaarheid van goede digitale printers zijn belangrijke enablers, waardoor de traditionele textielindustrie in de komende jaren een belangrijke transformatie zal ondergaan.De technologische doorbraken die hierachter zitten worden gedreven door de opkomende vraag naar mass customization en de noodzaak van ecologisch vriendelijke processen.Dat betekent dus een productiesysteem waarin alle nog noodzakelijke unit operations aan elkaar gekoppeld zijn tot een samenhangend geheel: de “factory of the future”. Traditioneel was het doek de verbindende schakel tussen de verschillende stappen. In de nieuwe situatie is digitale informatie en input/output variabelen. Uit het voorgaande kan geconcludeerd worden dat er enorm geïnvesteerd moet<
MULTIFILE