ObjectivesTo investigate cartilage tissue turnover in response to a supervised 12-week exercise-related joint loading training program followed by a 6-month period of unsupervised training in patients with knee osteoarthritis (OA). To study the difference in cartilage tissue turnover between high- and low-resistance training.MethodPatients with knee OA were randomized into either high-intensity or low-intensity resistance supervised training (two sessions per week) for 3 months and unsupervised training for 6 months. Blood samples were collected before and after the supervised training period and after the follow-up period. Biomarkers huARGS, C2M, and PRO-C2, quantifying cartilage tissue turnover, were measured by ELISA. Changes in biomarker levels over time within and between groups were analyzed using linear mixed models with baseline values as covariates.ResultshuARGS and C2M levels increased after training and at follow-up in both low- and high-intensity exercise groups. No changes were found in PRO-C2. The huARGS level in the high-intensity resistance training group increased significantly compared to the low-intensity resistance training group after resistance training (p = 0.029) and at follow-up (p = 0.003).ConclusionCartilage tissue turnover and cartilage degradation appear to increase in response to a 3-month exercise-related joint loading training program and at 6-month follow-up, with no evident difference in type II collagen formation. Aggrecan remodeling increased more with high-intensity resistance training than with low-intensity exercise.These exploratory biomarker results, indicating more cartilage degeneration in the high-intensity group, in combination with no clinical outcome differences of the VIDEX study, may argue against high-intensity training.
Generalized joint hypermobility (GJH) is highly prevalent among patients diagnosed with chronic pain. When GJH is accompanied by pain in ≥4 joints over a period ≥3 months in the absence of other conditions that cause chronic pain, the hypermobility syndrome (HMS) may be diagnosed. In addition, GJH is also a clinical sign that is frequently present in hereditary diseases of the connective tissue, such as the Marfan syndrome, osteogenesis imperfecta, and the Ehlers-Danlos syndrome. However, within the Ehlers-Danlos spectrum, a similar subcategory of patients having similar clinical features as HMS but lacking a specific genetic profile was identified: Ehlers-Danlos syndrome hypermobility type (EDS-HT). Researchers and clinicians have struggled for decades with the highly diverse clinical presentation within the HMS and EDS-HT phenotypes (Challenge 1) and the lack of understanding of the pathological mechanisms that underlie the development of pain and its persistence (Challenge 2). In addition, within the HMS/EDS-HT phenotype, there is a high prevalence of psychosocial factors, which again presents a difficult issue that needs to be addressed (Challenge 3). Despite recent scientific advances, many obstacles for clinical care and research still remain. To gain further insight into the phenotype of HMS/EDS-HT and its mechanisms, clearer descriptions of these populations should be made available. Future research and clinical care should revise and create consensus on the diagnostic criteria for HMS/EDS-HT (Solution 1), account for clinical heterogeneity by the classification of subtypes within the HMS/EDS-HT spectrum (Solution 2), and create a clinical core set (Solution 3).
A significant proportion of adolescents with chronic musculoskeletal pain (CMP) experience difficulties in physical functioning, mood and social functioning, contributing to diminished quality of life. Generalized joint hypermobility (GJH) is a risk factor for developing CMP with a striking 35-48% of patients with CMP reporting GJH. In case GJH occurs with one or more musculoskeletal manifestations such as chronic pain, trauma, disturbed proprioception and joint instability, it is referred to as generalized hypermobility spectrum disorder (G-HSD). Similar characteristics have been reported in children and adolescents with the hypermobile Ehlers-Danlos Syndrome (hEDS). In the management of CMP, a biopsychosocial approach is recommended as several studies have confirmed the impact of psychosocial factors in the development and maintenance of CMP. The fear-avoidance model (FAM) is a cognitive-behavioural framework that describes the role of pain-related fear as a determinant of CMP-related disability. Pubmed was used to identify existing relevant literature focussing on chronic musculoskeletal pain, generalized joint hypermobility, pain-related fear and disability. Relevant articles were cross-referenced to identify articles possibly missed during the primary screening. In this paper the current state of scientific evidence is presented for each individual component of the FAM in hypermobile adolescents with and without CMP. Based on this overview, the FAM is proposed explaining a possible underlying mechanism in the relations between GJH, pain-related fear and disability. It is assumed that GJH seems to make you more vulnerable for injury and experiencing more frequent musculoskeletal pain. But in addition, a vulnerability for heightened pain-related fear is proposed as an underlying mechanism explaining the relationship between GJH and disability. Further scientific confirmation of this applied FAM is warranted to further unravel the underlying mechanism. In explaining disability in individuals with G-HSD/hEDS, it is important to focus on both the physical components related to joint hypermobility, in tandem with the psychological components such as pain-related fear, catastrophizing thoughts and generalized anxiety.