Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound heavy metals, which are known to often accumulate in the topsoil. In this study, a portable XRF instrument is used to provide in situ spatial characterization of soil pollutants. The method uses portable XRF measurements of heavy metals along profiles with set intervals (1 meter) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.
MULTIFILE
Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of sustainable urban drainage systems (SUDS). SUDS are installed around the world with the expectation to reduce urban flooding and reduce the pollution impact on receiving waters. Most cities in Asia are starting to implement SUDS as their strategy to make their cities sustainable and resilient.The combination of SUDS with appropriate wastewater treatment and management systems have the potential to be multifunctional in alleviating flood run-off, improving water quality, alleviating heat stress and as a source for reusing the stormwater and wastewater.Since the earliest SUDS are implemented in Europe decades ago it is advised to use the lessons learnt in this process. International knowledge exchange is promoted in projects as IWASTO where several organisations from the Philippines and The Netherlands join forces on a specific region as the Pateros riverin Manila with the aim to minimise the pollution impact on this receiving water. The first findings of this project related to storm water and wastewater management are presented in this paper. In this stage of the project high level support models that map the challenges in the city (such as flooding and heatstress) arevaluable tools for implementing cost effective sustainable drainage for improving water quality.
DOCUMENT
Urbanisation and climate change have an effect on the water balance in our cities resulting in challenges as flooding, droughts and heatstress. Implementation of Sustainable Urban Drainage Systems (SuDS) can help to restore the water balance in cities by storing and infiltrating stormwater into the subsurface to minimise flooding, restoration of groundwater tables to prevent droughts, lowering temperatures by evapotranspiration to fight heatstress. Urban planners and otherstakeholders in municipalities and water authorities struggle with implementing SuDS at locations where infiltration of water seems challenging. Questions arise as: can you infiltrate in countries as The Netherlands with parts under sea level, high groundwater table and low permeable soil? Can you infiltrate in Norway with low permeable or impermeable bedrock and frozen ground most of theyear? How do you find space to implement SuDS in the dense urban areas of Bucharest? These questions are answered by researchers of the JPI Water funded project INovations for eXtreme Climatic Events (INXCES).To answer the question on ‘can we infiltrate stormwater under worse case conditions?’, testing of the hydraulic capacity take place at rainwater gardens in Norway (Bergen and Trondheim) and (bio)swales in the low lying parts of The Netherlands. The first results show that even under these ‘extreme’ hydraulic circumstances the hydraulic capacity (or empty time) is sufficient to infiltratemost of the stormwater throughout the year.INXCES exchanged researchers on an international level, shared research results with stakeholders and sets up guidelines for design, implementation and maintenance of SuDS to promote the implementation of sustainable water management systems throughout the world.One of the tools used to promote SuDS is www.climatescan.nl, an open source online map application that provides an easy-to-access database of international project information in the field of urban resilience and climate adaptation. The tool is able to map several sustainable urban drainage systems as has been done for Norway, The Netherlands, Romania and other countries in the world.The tool is used for engagement with stakeholders within EU projects as INXCES and WaterCoG and resulted in international knowledge exchange on infiltration of stormwater under extreme climate and geohydrolic circumstances.
DOCUMENT