IntroductionThe driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing.AimTo compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS.MethodsSingle-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation.ResultsThirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0–10.0] vs. 10.0 [8.0–11.0] cmH2O, mean difference − 2.5 [95% CI − 2.6 to − 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients.ConclusionsIn this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation.Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1.
MULTIFILE
BACKGROUND The mechanical power of ventilation (MP) has an association with outcome in invasively ventilated patients with the acute respiratory distress syndrome (ARDS). Whether a similar association exists in invasively ventilated patients without ARDS is less certain.OBJECTIVE To investigate the association of mechanical power with mortality in ICU patients without ARDS.DESIGN This was an individual patient data analysis that uses the data of three multicentre randomised trials.SETTING This study was performed in academic and nonacademic ICUs in the Netherlands.PATIENTS One thousand nine hundred and sixty-two invasively ventilated patients without ARDS were included in this analysis. The median [IQR] age was 67 [57 to 75] years, 706 (36%) were women.MAIN OUTCOME MEASURES The primary outcome was the all-cause mortality at day 28. Secondary outcomes were the all-cause mortality at day 90, and length of stay in ICU and hospital.RESULTS At day 28, 644 patients (33%) had died. Hazard ratios for mortality at day 28 were higher with an increasing MP, even when stratified for its individual components (driving pressure (P < 0.001), tidal volume (P < 0.001), respiratory rate (P < 0.001) and maximum airway pressure (P = 0.001). Similar associations of mechanical power (MP) were found with mortality at day 90, lengths of stay in ICU and hospital. Hazard ratios for mortality at day 28 were not significantly different if patients were stratified for MP, with increasing levels of each individual component.CONCLUSION In ICU patients receiving invasive ventilation for reasons other than ARDS, MP had an independent association with mortality. This finding suggests that MP holds an added predictive value over its individual components, making MP an attractive measure to monitor and possibly target in these patients.TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02159196, ClinicalTrials.gov Identifier: NCT02153294, ClinicalTrials.gov Identifier: NCT03167580.
The primary aims of this study were (1) to evaluate whole-body mechanical efficiency (ME) in a large group of chronic obstructive pulmonary disease (COPD) patients with a wide range of degrees of illness and (2) to examine how ME in COPD is related to absolute work rate and indices of disease severity during exercise testing. A total of 569 patients (301 male patients; GOLD stage I: 28, GOLD stage II: 166, GOLD stage III: 265, and GOLD stage IV: 110) with chronic obstructive pulmonary disease (COPD) were included in the data analysis. Individual maximal workload (watt), peak minute ventilation ((Equation is included in full-text article.)E, L/min body temperature and pressure, saturated), and peak oxygen uptake ((Equation is included in full-text article.)O2, mL/min standard temperature and pressure, dry) were determined from a maximal incremental cycle ergometer test. Ventilatory and metabolic response parameters were collected during a constant work rate test at 75% of the individual maximal workload. From the exercise responses of the constant work rate test, the gross ME was calculated. The mean whole-body gross ME was 11.0 ± 3.5% at 75% peak power. The ME declined significantly (P < .001) with increasing severity of the disease when measured at the same relative power. Log-transformed absolute work rate (r = .87, P < .001) was the strongest independent predictor of gross ME. Body mass was the single other variable that contributed significantly to the linear regression model. Gross ME in COPD was largely predicted by the absolute work rate (r = .87; P < .001) while indices of the severity of the disease did not predict ME in COPD.