ObjectiveTo determine the effect of a multidisciplinary lifestyle program in patients with RA with low–moderate disease activity.MethodsIn the ‘Plants for Joints’ (PFJ) parallel-arm, assessor-blind randomized controlled trial, patients with RA and 28-joint DAS (DAS28) ≥2.6 and ≤5.1 were randomized to the PFJ or control group. The PFJ group followed a 16-week lifestyle program based on a whole-food plant-based diet, physical activity and stress management. The control group received usual care. Medication was kept stable 3 months before and during the trial whenever possible. We hypothesized that PFJ would lower disease activity (DAS28). Secondary outcomes included anthropometric, metabolic and patient-reported measures. An intention-to-treat analysis with a linear mixed model adjusted for baseline values was used to analyse between-group differences.ResultsOf the 83 people randomized, 77 completed the study. Participants were 92% female with mean (S.D.) age of 55 (12) years, BMI of 26 (4) kg/m2 and mean DAS28 of 3.8 (0.7). After 16 weeks the PFJ group had a mean 0.9-point greater improvement of DAS28 vs the control group (95% CI 0.4, 1.3; P < 0.0001). The PFJ intervention led to greater decreases in body weight (difference –3.9 kg), fat mass (–2.8 kg), waist circumference (–3 cm), HbA1c (–1.3 mmol/mol) and low-density lipoprotein (–0.32 mmol/l), whereas patient-reported outcome measures, blood pressure, glucose and other lipids did not change.ConclusionThe 16-week PFJ multidisciplinary lifestyle program substantially decreased disease activity and improved metabolic status in people with RA with low–moderate disease activity.Trial RegistrationInternational Clinical Trials Registry Platform; https://www.who.int/clinical-trials-registry-platform; NL7800.
Background: The objective of this study was to derive evidence-based physical activity guidelines for the general Dutch population. Methods: Two systematic reviews were conducted of English language meta-analyses in PubMed summarizing separately randomized controlled trials and prospective cohort studies on the relation between physical activity and sedentary behaviour on the one hand and the risk of all-cause mortality and incidence of 15 major chronic diseases and conditions on the other hand. Other outcome measures were risk factors for cardiovascular disease and type 2 diabetes, physical functioning, and fitness. On the basis of these reviews, an expert committee derived physical activity guidelines. In deriving the guidelines, the committee first selected only experimental and observational prospective findings with a strong level of evidence and then integrated both lines of evidence. Results: The evidence found for beneficial effects on a large number of the outcome measures was sufficiently strong to draw up guidelines to increase physical activity and reduce sedentary behaviour, respectively. At the same time, the current evidence did not provide a sufficient basis for quantifying how much physical activity is minimally needed to achieve beneficial health effects, or at what amount sedentary behaviour becomes detrimental. A general tenet was that at every level of current activity, further increases in physical activity provide additional health benefits, with relatively larger effects among those who are currently not active or active only at light intensity. Three specific guidelines on (1) moderate- and vigorous-intensity physical activity, (2) bone- and musclestrengthening activities, and (3) sedentary behaviour were formulated separately for adults and children. Conclusions: There is an unabated need for evidence-based physical activity guidelines that can guide public health policies. Research in which physical activity is measured both objectively (quantity) and subjectively (type and quality) is needed to provide better estimates of the type and actual amount of physical activity required for health.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.