In 2008 heeft het Koninklijk Nederlands Genootschap voor Fysiotherapie (KNGF) de KNGF-beweegprogramma’s herzien; het warden de ‘Standaarden Beweeginterventies’, gericht op mensen met een chronische aandoening. Een dergelijke standaard stelt een voldoende competente fysiotherapeut in staat bij mensen met een chronische aandoening een actieve leefstijl te bevorderen en hun mate van fitheid te verhogen. Basis voor de herziening vormen de oorspronkelijk door TNO ontwikkelde beweegprogramma’s, van waaruit de tekst grondig is geactualiseerd. De gedetailleerde invulling van de programma’s in ‘kookboekstijl’ is niet opnieuw opgenomen. Gekozen is voor een actueel concept dat de fysiotherapeut de mogelijkheid biedt een ‘state-of-the-art’programma te ontwikkelen met respect voor de individuele patiënt en praktijkspecifieke randvoorwaarden
Multiple organizations around the world have issued evidence-based exercise guidance for patients with cancer and cancer survivors. Recently, the American College of Sports Medicine has updated its exercise guidance for cancer prevention as well as for the prevention and treatment of a variety of cancer health-related outcomes (eg, fatigue, anxiety, depression, function, and quality of life). Despite these guidelines, the majority of people living with and beyond cancer are not regularly physically active. Among the reasons for this is a lack of clarity on the part of those who work in oncology clinical settings of their role in assessing, advising, and referring patients to exercise. The authors propose using the American College of Sports Medicine's Exercise Is Medicine initiative to address this practice gap. The simple proposal is for clinicians to assess, advise, and refer patients to either home-based or community-based exercise or for further evaluation and intervention in outpatient rehabilitation. To do this will require care coordination with appropriate professionals as well as change in the behaviors of clinicians, patients, and those who deliver the rehabilitation and exercise programming. Behavior change is one of many challenges to enacting the proposed practice changes. Other implementation challenges include capacity for triage and referral, the need for a program registry, costs and compensation, and workforce development. In conclusion, there is a call to action for key stakeholders to create the infrastructure and cultural adaptations needed so that all people living with and beyond cancer can be as active as is possible for them.
PurposeCancer-related cognitive impairment (CRCI) following chemotherapy is commonly reported in breast cancer survivors, even years after treatment. Data from preclinical studies suggest that exercise during chemotherapy may prevent or diminish cognitive problems; however, clinical data are scarce.MethodsThis is a pragmatic follow-up study of two original randomized trials, which compares breast cancer patients randomized to exercise during chemotherapy to non-exercise controls 8.5 years post-treatment. Cognitive outcomes include an online neuropsychological test battery and self-reported cognitive complaints. Cognitive performance was compared to normative data and expressed as age-adjusted z-scores.ResultsA total of 143 patients participated in the online cognitive testing. Overall, cognitive performance was mildly impaired on some, but not all, cognitive domains, with no significant differences between groups. Clinically relevant cognitive impairment was present in 25% to 40% of all participants, regardless of study group. We observed no statistically significant effect of exercise, or being physically active during chemotherapy, on long-term cognitive performance or self-reported cognition, except for the task reaction time, which favored the control group (β = -2.04, 95% confidence interval: -38.48; -2.38). We observed no significant association between self-reported higher physical activity levels during chemotherapy or at follow-up and better cognitive outcomes.ConclusionIn this pragmatic follow-up study, exercising and being overall more physically active during or after adjuvant chemotherapy for breast cancer was not associated with better tested or self-reported cognitive functioning, on average, 8.5 years after treatment. Future prospective studies are needed to document the complex relationship between exercise and CRCI in cancer survivors.
MULTIFILE
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.