Collaborative learning tasks may represent an effective way to stimulate higher-order processes among high-ability students in regular classrooms. This study investigatedthe effects of task structure and group composition on the elaboration and metacognitive activities of 11th grade preuniversity students during a collaborative learning task: 102 students worked in small groups. On an ill-structured or moderately structured task. Differential effects forcognitive ability were investigated using a continuous measure. Likewise, the effects of group composition were examined using a continuous measure of the cognitiveheterogeneity of the group. The group dialogues were transcribed and coded. Analysis revealed an interaction effect between task structure and cognitive abilityon students’ elaboration and metacognitive activities. Task structure had a negative effect on the elaborative contributions of high-ability students. For students with lower abilities, task structure had a positive effect onelaboration and metacognitive activities. No effects were found of the cognitive heterogeneity of the group. Group composition seemed not to be related to group interactionamong 11th grade pre-university students. The results indicate that open-ended collaborative tasks with little guidance and directions on how to handle them, canstimulate higher-order processes among high-ability students and may offer them the challenge they need.
MULTIFILE
Researchers in CSCL have used a wide range of qualitative and quantitative methods to track students' cognitive involvement during collaboration. However, neither individual method suffices the need to capture the dynamic evolvement of students' epistemic engagement in CSCL. We developed Epistemic Synchronization Index (ESI) to quantify students' epistemic engagement and evolvement. ESI reveals the knowledge elaboration process of groups, and it helps researchers as well as teachers to distinguish epistemic involvement between members within one group.
DOCUMENT
This case study illustrates the sequential process of the joint and individual knowledge elaboration in a computer-supported collaborative learning (CSCL) environment. The case comprised an Internet-based physics problem-solving platform. Six Dutch secondary school students (three males, three females) participated in the three-week experiment. They were paired based on self-selection. Each dyad was asked to collaborate on eight moderately structured problems concerning Newtonian mechanics. Their online interactions, including their textual and pictorial messages, were categorized and sequentially plotted. The three dyads showed three different collaboration patterns in terms of joint and individual knowledge elaboration.
DOCUMENT
The aim of the study is to investigate the influence of gender and gender pairing on students’ learning performances and knowledge elaboration processes in Computer-Supported Collaborative Learning (CSCL). A sample of ninety-six secondary school students, participated in a two-week experiment.Students were randomly paired and asked to solve several moderately structured problems concerning Newtonian mechanics. Students’ pretest and posttest performances were analyzed to see whether students’ gender and the gender pairing (mixed or single-gender) were significant factors in their problem solving learning in CSCL. Students’ online interactions were also analyzed to unravel the dynamic process of individual knowledge elaboration. The multilevel analyses revealed that a divergent pattern of knowledge elaboration was a significant predictor for students’ learning achievement, and in mixed-gender dyads students’ knowledge elaboration processes were more inclined to diverge from each other. Moreover, females in single-gender dyads significantly outperformed females in mixed-gender dyads. But this was not the case for male students.
DOCUMENT
Poster presentation, Conference Proceedings of ijCSCL2015 (International Conference of Computer-Supported Collaborative Learning), Gothenburg, Sweden, June 2015.
DOCUMENT
Poster: Conference European Council of High Ability (ECHA), Ljubljana, Slovenia, 17-20 September 2014.
DOCUMENT
Organizing entrepreneurial collaboration in small, self-directed teams is gaining popularity. The underlying co-creation processes of developing a shared team vision were analyzed with a core focus on three underlying processes that originate from the shared mental models framework. These processes are: 1) the emergence of individual visions and vision integration, 2) conflict solving, and 3) redesigning the emerging knowledge structure. Key in the analysis is the impact of these three processes on two outcome variables: 1)the perceived strength of the co-creation process, 2) the final team vision. The influence of business expertise and the relationship between personality traits and intellectual synergy was also studied. The impact of the three quality shared mental model (SMM) variables proves to be significant and strong, but indirect. To be effective, individual visions need to be debated during a second conflict phase. Subsequently, redesigning the shared knowledge structure resulting from the conflict solving phase is a key process in a third elaboration phase. This sequence positively influences the experienced strength of the co-creation process, the latter directly enhancing the quality of the final team vision. The indirect effect reveals that in order to be effective, the three SMM processes need to be combined, and that the influence follows a specific path. Furthermore, higher averages as well as a diversity of business expertise enhance the quality of the final team vision. Significant relationships between personality and an intellectual synergy were found. The results offer applicable insights for team learning and group dynamics in developing an entrepreneurial team vision. LinkedIn: https://www.linkedin.com/in/rainer-hensel-phd-8ba44a43/ https://www.linkedin.com/in/ronald-visser-4591034/
DOCUMENT
No summary available
DOCUMENT
Objective: Gaining too much or too little weight in pregnancy (according to Institute of Medicine (IOM) guidelines) negatively affects both mother and child, but many women find it difficult to manage their gestational weight gain (GWG). Here we describe the use of the intervention mapping protocol to design ‘Come On!’, an intervention to promote adequate GWG among healthy pregnant women. Design: We used the six steps of intervention mapping: (i) needs assessment; (ii) formulation of change objectives; (iii) selection of theory-based methods and practical strategies; (iv) development of the intervention programme; (v) development of an adoption and implementation plan; and (vi) development of an evaluation plan. A consortium of users and related professionals guided the process of development. Results: As a result of the needs assessment, two goals for the intervention were formulated: (i) helping healthy pregnant women to stay within the IOM guidelines for GWG; and (ii) getting midwives to adequately support the efforts of healthy pregnant women to gain weight within the IOM guidelines. To reach these goals, change objectives and determinants influencing the change objectives were formulated. Theories used were the Transtheoretical Model, Social Cognitive Theory and the Elaboration Likelihood Model. Practical strategies to use the theories were the foundation for the development of ‘Come On!’, a comprehensive programme that included a tailored Internet programme for pregnant women, training for midwives, an information card for midwives, and a scheduled discussion between the midwife and the pregnant woman during pregnancy. The programme was pre-tested and evaluated in an effect study.
MULTIFILE