In dit themanummer van Maatwerk over evidence based werken argumenteert dit artikel dat de sociale sector meer nodig heeft dan onderzoekende hulpverleners om de kritiek te beantwoorden die de afgelopen decennia op de sector geformuleerd is.
Als hulpverlener en als docent is het belangrijk dat je op de hoogte bent van de laatste ontwikkelingen in je vakgebied. Het laatste decennium wordt veel aandacht besteed aan de wetenschappelijke onderbouwing van diverse beroepen in de gezondheidszorg, de zorg dient 'evidence based' te zijn. In dit artikel wordt geschetst wat de uitgangspunten van de opleidingen zijn en volgens welke methodiek de implementatie wordt aangepakt.
Evidence based practise (EBP) is de laatste jaren een veel besproken onderwerp in de paramedische beroepsgroepen. Het belang van het evidence based handelen in het dagelijkse methodisch handelen wordt steeds meer onderstreept. Het verwerven van evidence based vaardigheden bij studenten logopedie krijgt dan ook steeds meer een prominentere rol in het competentiegericht opleidingscurriculum. In dit artikel wordt beschreven wat onder EBP wordt verstaan en hoe de implementatie van het evidence based practise denken en handelen in het buitenschoolse leren van de opleiding logopedie Hogeschool Zuyd systematisch wordt aangepakt.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Project BAMBAM, BAby Motor development monitored By A Multisensor wearable, richt zich op het begin, namelijk bij de zorg voor kinderen van 0-2 jaar. In het bijzonder op het optimaliseren van de ontwikkeling van de motoriek wanneer dit niet vanzelf gaat. Kinderfysiotherapeuten begeleiden veel baby’s waarbij er zorgen zijn over de motorische ontwikkeling. Een goed ontwikkelde motoriek is de basis voor andere ontwikkelingsdomeinen,en een voorwaarde voor een fysiek actieve leefstijl op latere leeftijd. Het inzetten van technologie bij het analyseren van bewegingsproblemen bij het jonge kind kan een waardevolle aanvulling zijn voor de kinderfysiotherapeut, die nu eigen observaties gebruikt. Op dit moment is er nog geen geschikt systeem voor het observeren van de motorische ontwikkeling voor kinderfysiotherapeuten. Daarom werken we in project BAMBAM aan een meetinstrument voor het objectiveren van bewegingsgedrag van baby’s, dat verantwoord ingezet kan worden in de kinderfysiotherapeutische praktijk en interventiestudies. Uitgangspunt is een bestaande smartsuit, een ‘slimme' romper, met sensortechnologie en Artificiële Intelligentie die doorontwikkeld wordt in co creatie met kinderfysiotherapeuten, ouders en experts. Ook onderzoeken we hoe de uitkomsten van het systeem waarde toevoegen als beslissingsondersteuning voor de kinderfysiotherapeut. Hierbij richten we ons vooral op de bewegingsparameters die belangrijk zijn voor het kinderfysiotherapeutisch onderzoek en behandeling en hoe we die duidelijk kunnen weergeven. Het systeem moet valide en betrouwbare metingen verzorgen in de thuissituatie voor de kinderfysiotherapeut in praktijk en ziekenhuis. De impact van deze toepassing op ouders en kinderfysiotherapeuten is een belangrijk onderdeel bij het ontwikkelen van deze technologie, zodat het op een verantwoorde manier gebruikt kan worden. De gezondheidszorg vraagt om evidence-based diagnostiek en interventies. Met de schaarste van zorg, wordt het zorgvuldig signaleren van de baby’s die de zorg echt nodig hebben steeds belangrijker, net als de inzet van effectieve interventies. Technologie kan bijdragen aan toegankelijkheid en duurzame borging hiervan.