Background: This paper presents the findings of a pilot research survey which assessed the degree of balance between safety and productivity, and its relationship with awareness and communication of human factors and safety rules in the aircraft manufacturing environment.Methods: The study was carried out at two Australian aircraft manufacturing facilities where a Likertscale questionnaire was administered to a representative sample. The research instrument included topics relevant to the safety and human factors training provided to the target workforce. The answers were processed in overall, and against demographic characteristics of the sample population.Results: The workers were sufficiently aware of how human factors and safety rules influence their performance and acknowledged that supervisors had adequately communicated such topics. Safety and productivity seemed equally balanced across the sample. A preference for the former over the latter wasassociated with a higher awareness about human factors and safety rules, but not linked with safety communication. The size of the facility and the length and type of employment were occasionally correlated with responses to some communication and human factors topics and the equilibrium between productivity and safety.Conclusion: Although human factors training had been provided and sufficient bidirectional communication was present across the sample, it seems that quality and complexity factors might have influencedthe effects of those safety related practices on the safety-productivity balance for specific parts of the population studied. Customization of safety training and communication to specific characteristics of employees may be necessary to achieve the desired outcomes.
DOCUMENT
In this document, we provide the methodological background for the Safety atWork project. This document combines several project deliverables as defined inthe overall project plan: validation techniques and methods (D5.1.1), performanceindicators for safety at work (D5.1.2), personal protection equipment methods(D2.1.2), situational awareness methods (D3.1.2), and persuasive technology methods(D4.1.2).
MULTIFILE
As part of their SMS, aviation service providers are required to develop and maintain the means to verify the safety performance of their organisation and to validate the effectiveness of safety risk controls. Furthermore, service providers must verify the safety performance of their organisation with reference to the safety performance indicators and safety performance targets of the SMS in support of their organisation’s safety objectives. However, SMEs lack sufficient data to set appropriate safety alerts and targets, or to monitor their performance, and no other objective criteria currently exist to measure the safety of their operations. The Aviation Academy of the Amsterdam University of Applied Sciences therefore took the initiative to develop alternative safety performance metrics. Based on a review of the scientific literature and a survey of existing safety metrics, we proposed several alternative safety metrics. After a review by industry and academia, we developed two alternative metrics into tools to help aviation organisations verify the safety performance of their organisations.The AVAV-SMS tool measures three areas within an organisation’s Safety Management System:• Institutionalisation (design and implementation along with time and internal/external process dependencies).• Capability (the extent to which managers have the capability to implement the SMS).• Effectiveness (the extent to which the SMS deliverables add value to the daily tasks of employees).The tool is scalable to the size and complexity of the organisation, which also makes it useful for small and medium-sized enterprises (SMEs). The AVAS-SCP tool also measures three areas in the organisation’s safety culture prerequisites to foster a positive safety culture:• Organisational plans (whether the company has designed/documented each of the safety cultureprerequisites).• Implementation (the extent to which the prerequisites are realised by the managers/supervisors acrossvarious organisational levels).• Perception (the degree to which frontline employees perceive the effects of managers’ actions relatedto safety culture).We field-tested these tools, demonstrating that they have adequate sensitivity to capture gaps between Work-as-Imagined (WaI) and Work-as-Done (WaD) across organisations. Both tools are therefore useful to organisations that want to self-assess their SMS and safety culture prerequisite levels and proceed to comparisons among various functions and levels and/or over time. Our field testing and observations during the turn-around processes of a regional airline confirm that significant differences exist between WaI and WaD. Although these differences may not automatically be detrimental to safety, gaining insight into them is clearly necessary to manage safety. We conceptually developed safety metrics based on the effectiveness of risk controls. However, these could not be fully field-tested within the scope of this research project. We recommend a continuation of research in this direction. We also explored safety metrics based on the scarcity of resources and system complexity. Again, more research is required here to determine whether these provide viable solutions.
DOCUMENT
Aanleiding: Automatisering kan leiden tot beter gebruik van materialen en afval reduceren. Dit brengt verbeteringen met zich mee voor 'people, planet and profit' (PPP) - mensen, het milieu en de winst. Een specifieke vorm van automatisering, de ontwikkeling van zelfrijdende auto's en vrachtauto's, gaat snel. Maar om zelfrijdende voertuigen beschikbaar te maken is er nog veel onderzoek en ontwikkeling nodig op verschillende gebieden. Er zijn nog veel vragen te beantwoorden op het gebied van onder andere truckontwerp, betrouwbare software, aansprakelijkheid, trajectplanning en logistiek. Doelstelling Het doel van het Intralog-project is om voor de maatschappij en de private sector een significante bijdrage te leveren aan de mogelijkheden van zelfrijdende voertuigen in de commerciële transportsector. Het Intralog-project onderzoekt de toegevoegde waarde voor PPP van 'automated guided trucks' (AGT's) aan logistieke operaties bij distributiecentra en interterminal/intermodal traffic hubs. Dit gebeurt in twee stappen: 1) het identificeren van het potentieel met betrekking tot de vraag vanuit de logistieke omgeving; 2. het ontwerpen, realiseren, testen en valideren van mogelijke strategieën voor het implementeren van AGT's in een logistiek scenario. Beoogde resultaten Het concrete resultaat van het project bestaat uit onderzoekstools en hardware- en softwaremodellen voor Intralog. Deze bieden een goede mogelijkheid om de opgedane kennis te verspreiden. De projectdeelnemers zullen bijdragen aan workshops, tentoonstellingen en in Nederland georganiseerde symposia. De onderzoeksresultaten verspreiden ze op conferenties en door middel van publicaties in technische vakbladen. De uiteindelijke Intralog-resultaten worden gepresenteerd op een afsluitend congres. De resultaten zullen worden samengevat in een boekje.
In September 2018 a gaming dashboard is implemented and reviewed on effect at Jan de Rijk, Gebroeders Versteijnen and Merba. The dash board should give insight in the individual and team performance of employees in the their work processes through a gamesome modern visualisation‘In what way is it possible to design and apply ‘game design techniques’ and ‘game elements’ in performance dashboards, so that employees are constantly motivated to improve productivity, quality and safety of their individual proceedings and learning, so that the investment in gamification is profitable?’
With increasing labor shortages, sectors using mobile machines (automotive/industry/agrifood/logistics) have a rising need for productivity improvement. With evolving technology, mobile machine control has stepped from hydraulics to electronics using sensors and smart systems to support drivers and allowing intelligent and automated machine functions. Verification and validation costs of such complex functionality urge the need for virtual solution routes to limit the lead time, cost and safety issues of real-world testing. RAAK-mkb project Fast&Curious developed tools to enable model-driven development for the control of a wide range of vehicle systems. This included automatic code generation support from MATLAB/Simulink® into the Bodas RC30 family vehicle controllers from Bosch Rexroth (see www.openMBD.com). The solution has been adopted by several SMEs allowing them to start working in a model-driven way, helping them to do virtual verification&validation, lowering development time and costs. Meanwhile, Rexroth adopted MATLAB/Simulink for core vehicle functions development and currently develops Fast&Curious-alike automatic code generation support for their recent RC40 controllers. Virtuoso aims to further improve productivity on simulation level by creating an interface layer in Simulink to (automatically) test impact of hardware interface imperfections and failures, such as noise and short circuits, as well as to seamlessly switch between continuous (early development) and discretized (deployment-oriented) input/output behavior. Companies like Emoss and Jautomatisering are interested in such solutions, allowing them to adopt efficient, model-driven processes and supporting their engineers in the required hydraulics-to-software/electronics skill-shift. The solution connects well to future developments like robotization. Besides supporting development of vehicle automation and mobile robotics, MATLAB/Simulink also supports ROS (Robot Operating System) via co-simulation and co-deployment. ROS has become the standard in (mobile) robot control development and is used by many parties. Virtuoso further closes the gap between development and deployment and allows future integration in mobile robotics, foreseen as next step.