This research report contains the findings of an international study consisting of three online ‘living’ surveys. The surveys focused on how the COVID-19 pandemic has impacted sign language interpreters’ working practices, how this was experienced by them, and how digital disruption caused by the pandemic is impacting and innovating the sign language interpreting profession. The study was carried out between April 2020 and July 2020; the largest contingent of respondents over all three surveys were from the U.S., followed by the UK, the Netherlands, Germany, Finland and Belgium. Respondents commented that the crisis will probably accelerate the need for remote interpreting training in interpreter training programs. Another resurfacing issue was the perceived need for sign language interpreting students to have face-to-face practice and live mentoring. Respondents commented on what benefits they thought remote interpreting might bring to the table, both for themselves and for deaf people. In general, the most significant benefits that were mentioned were flexibility and the possibility to improve efficiency and availability of sign language interpreting services. Notwithstanding these benefits, a significant number of respondents claimed that remote interpreting is more stressful than face-to-face interpreting and requires a heavier cognitive load.
DOCUMENT
Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an extensive software kit. A layer of middleware will manage and control a complex set of interconnections between teams of operators, hardware devices in various operating theatres, and databases managing tool and task logistics. The middleware is driven by constraints on the amounts and timing of data like real-time control loops, camera images, and database access. The Remote Handling Study Centre (RHSC), located at FOM Institute DIFFER, has a 4-operator work cell in an ITER-relevant RH control room setup which connects to a virtual hot cell back-end. The Centre is developing and testing flexible integration of the Control Room components, resulting in proof-of-concept tests of this middleware layer. SW components studied include generic human-machine interface software, a prototype of an RH operations management system, and a distributed virtual reality system supporting multi-screen, multi-actor, and multiple independent views. Real-time rigid body dynamics and contact interaction simulation software supports the simulation of structural deformation, "augmented reality" operations and operator training. The paper presents generic requirements and conceptual design of middleware components and Operations Management Systems in the context of an RH Control Room work cell. The simulation software is analyzed for real-time performance and it is argued that it is critical for middleware to have complete control over the physical network to be able to guarantee bandwidth and latency to the components.
LINK
The fundamental premise of this chapter is that technology-mediated remote work in and of itself is not necessarily a panacea for disability inclusion. This necessitates a focus on what technologies enables individuals to do (and not do). This chapter draws on a mixed-methods (a survey and qualitative interviews) study of disabled workers in Belgium and the United Kingdom guided by the overarching question of which affordances and constraints are experienced by disabled workers when interacting with remote work technology during the initial two lockdowns of the COVID-19 pandemic.
MULTIFILE
Covid-19 made us realize that educational practices in higher education must change AND can change. A possible solution for practicing lab work is working in a remote lab: a real lab in which students and the equipment/instruments are physically apart. The concept of printed touchless electronics was taken as the leading principle for students in the Department of Electrical Engineering of a university of applied sciences. They got the assignment to write a programming code, with which they could control a robot. This robot was supposed to draw, with conductive ink, a pattern, that could function as a printed (light) sensor. The robot was situated in the lab, the students uploaded their code from home. Via a live stream, the students could follow the movements of the robot and the pen. From a didactical perspective, the goal was to find out if the selected didactical methods: teamwork and feedback via an internet platform and working with consultation hours, had the estimated effect. An interdisciplinary team of three lecturers was composed to guide the students. Students thought that the consultation hours were very helpful. The online teamwork between the students did not work so well. In the future, students would like to have more opportunities for testing and working with the remote lab.
DOCUMENT
This article examines the impact of the COVID-19 pandemic on the sign language interpreting profession drawing on data from a fourth and final survey conducted in June 2021 as part of a series of online “living surveys” during the pandemic. The survey, featuring 331 respondents, highlights significant changes in the occupational conditions and practices of sign language interpreters due to the sudden shift towards remote video-mediated interpreting. The findings reveal a range of challenges faced by interpreters, including the complexities of audience design, lack of backchanneling from deaf consumers, the need for heightened self-monitoring, nuanced conversation management, and team work. Moreover, the study highlights the physical and mental health concerns that have emerged among interpreters as a result of the shift in working conditions, and a need for interpreters to acquire new skills such as coping with the multimodal nature of online interpreting. While the blend of remote, hybrid, and on-site work has introduced certain advantages, it also poses new challenges encompassing workload management, online etiquette, and occupational health concerns. The survey’s findings underscore the resilience and adaptability of SLIs in navigating the shift to remote interpreting, suggesting a lasting transformation in the profession with implications for future practice, training, and research in the post-pandemic era.
DOCUMENT
Deictic gestures are gestures we make during communication to point at objects or persons. Indicative acts of directing-to guide the addressee to an object, while placing-for acts place an object for the addressee’s attention. Commonly used presentation software tools, such as PowerPoint and Keynote, offer ample support for placing-for gestures, e.g. slide transitions, progressive disclosure of list items and animations. Such presentation tools, however, do not generally offer adequate support for the directing-to indicative act (i.e. pointing gestures). In this paper we argue the value of presenting deictic gestures to a remote audience. Our research approach is threefold: identify indicative acts that are naturally produced by presenters; design tangible gestures for multi-touch surfaces that replicate the intent of those indicative acts; and design a set of graphical effects for remote viewing that best represent these indicative acts for the audience. Clinton Jorge1, Jos P. van Leeuwen2, Dennis Dams3, Jan Bouwen4 1 University of Madeira, Madeira-ITI, Funchal, Portugal; 2 The Hague University of Applied Sciences, The Hague, Netherlands; 3,4 Bell Labs, Alcatel-Lucent, Antwerp, Belgium Copyright shared between: University of Madeira, Madeira-ITI, Funchal, Portugal; The Hague University of Applied Sciences, The Hague, Netherlands; Bell Labs, Alcatel-Lucent, Antwerp, Belgium
DOCUMENT
Background: The COVID-19 pandemic taught us how to rethink care delivery. It catalyzed creative solutions to amplify the potential of personnel and facilities. This paper presents and evaluates a promptly introduced triaging solution that evolved into a tool to tackle the ever-growing waiting lists at an academic ophthalmology department, the TeleTriageTeam (TTT). A team of undergraduate optometry students, tutor optometrists, and ophthalmologists collaborate to maintain continuity of eye care. In this ongoing project, we combine innovative interprofessional task allocation, teaching, and remote care delivery. Objective: In this paper, we described a novel approach, the TTT; reported its clinical effectiveness and impact on waiting lists; and discussed its transformation to a sustainable method for delivering remote eye care. Methods: Real-world clinical data of all patients assessed by the TTT between April 16, 2020, and December 31, 2021, are covered in this paper. Business data on waiting lists and patient portal access were collected from the capacity management team and IT department of our hospital. Interim analyses were performed at different time points during the project, and this study presents a synthesis of these analyses. Results: A total of 3658 cases were assessed by the TTT. For approximately half (1789/3658, 48.91%) of the assessed cases, an alternative to a conventional face-to-face consultation was found. The waiting lists that had built up during the first months of the pandemic diminished and have been stable since the end of 2020, even during periods of imposed lockdown restrictions and reduced capacity. Patient portal access decreased with age, and patients who were invited to perform a remote, web-based eye test at home were on average younger than patients who were not invited. Conclusions: Our promptly introduced approach to remotely review cases and prioritize urgency has been successful in maintaining continuity of care and education throughout the pandemic and has evolved into a telemedicine service that is of great interest for future purposes, especially in the routine follow-up of patients with chronic diseases. TTT appears to be a potentially preferred practice in other clinics and medical specialties. The paradox is that judicious clinical decision-making based on remotely collected data is possible, only if we as caregivers are willing to change our routines and cognitions regarding face-to-face care delivery.
LINK
The COVID-19 pandemic has accelerated remote working and working at the office. This hybrid working is an indispensable part of today's life even within Agile Software Development (ASD) teams. Before COVID-19 ASD teams were working closely together in an Agile way at the office. The Agile Manifesto describes 12 principles to make agile working successful. These principles are about working closely together, face-to-face contact and continuously responding to changes. To what extent does hybrid working influence these agile principles that have been indispensable in today's software development since its creation in 2001? Based on a quantitative study within 22 Dutch financial institutions and 106 respondents, the relationship between hybrid working and ASD is investigated. The results of this research show that human factors, such as team spirit, feeling responsible and the ability to learn from each other, are the most decisive for the success of ASD. In addition, the research shows that hybrid working creates a distance between the business organization and the IT department. The findings are valuable for Managers, HR professionals and employees working in the field of ASD as emphasizing and fostering Team Spirit, Learning Ability, and a Sense of Responsibility among team members can bolster the Speed of ASD.
MULTIFILE
Virtual care centres (VCCs) are novel wards of hospitals and facilitate the provision of remote monitoring and home-based patient care by virtual care nurses. Whereas since the COVID-19 pandemic VCCs have rapidly emerged, there is a lack of insight in virtual care nurses’ work and the associated work load. Therefore, the aim of this study was to identify the nursing activities performed in Virtual Care Centers (VCCs) and assess nurses’ perceived workload associated with these activities. A multicentre descriptive, observational cross-sectional study was performed.
MULTIFILE