Aim. Although cultural dimensions theory is a topical strand of quantitative cultural research, few intercultural simulation games use it. We present the design and review of the application of OASISTAN, an intercultural role-playing simulation game that is specifically based on cultural dimensions theory. Method. OASISTAN was first designed in 1999 for use in Master’s courses on cross-cultural management at Delft University of Technology in the Netherlands, attracting 20-23 year old students with a Bachelor degree in engineering and from various cultural backgrounds. Since its first design the game has been played approximately 45 times at Delft University of Technology in the Netherlands and three times at Harbin Institute of Technology in China in the years 2006-2008. We reviewed their experiences designing and facilitating OASISTAN since 1999. Results. The game has a no-tech role-play design and revolves around the geopolitically complex region of the Caspian Sea, specifically the fictional country of ‘Oasistan’. The game consists of students forming small teams of Oasistani, Western and non-Western public/private actors collaborating with each other to try and reach the common goal of oil exploration and production in this country. In total 15-30 students were involved. We found that OASISTAN allowed its players not only to intensely experience the difficulty and awkwardness of being confronted with cultural differences, but also to interpret and understand these differences through cultural dimensions. Students who played OASISTAN identified ten out of the 12 dimensions by Maleki and De Jong. The two dimensions that students were not able to identify are uncertainty avoidance and collaborativeness. Conclusion. OASISTAN shows how a game design field (i.e., intercultural simulation gaming) can be reinvigorated in light of new or updated scientific theories pertaining to the field’s subject matter (i.e., cultural dimensions). Several opportunities for future research are identified.
MULTIFILE
The Interoceanic corridor of Mexico stands as a pivotal infrastructure project poised to significantly enhance Mexico's national and regional economy. Anticipated to start the operations in 2025 under the auspice of the national government, this corridor represents a strategic counterpart to the Panama Canal, which faces capacity constraints due to climate change and environmental impacts. Positioned as a promising alternative for transporting goods from Asia to North America, this corridor will offer a new transport route, yet its real operational capacity and spatial impacts remains uncertain. In this paper, the authors undertake a preliminary, informed analysis leveraging publicly available data and other specific information about infrastructure capacities and economic environment to forecast the potential throughput of this corridor upon full operationalization and in the future. Applying simulation techniques, the authors simulate the future operations of the corridor according to different scenarios to offer insights into its potential capacity and impacts. Furthermore, the paper delves into the opportunities and challenges that are inherent in this project and gives a comprehensive analysis of its potential impact and implications.
MULTIFILE
The real-time simulation of human crowds has many applications. In a typical crowd simulation, each person ('agent') in the crowd moves towards a goal while adhering to local constraints. Many algorithms exist for specific local ‘steering’ tasks such as collision avoidance or group behavior. However, these do not easily extend to completely new types of behavior, such as circling around another agent or hiding behind an obstacle. They also tend to focus purely on an agent's velocity without explicitly controlling its orientation. This paper presents a novel sketch-based method for modelling and simulating many steering behaviors for agents in a crowd. Central to this is the concept of an interaction field (IF): a vector field that describes the velocities or orientations that agents should use around a given ‘source’ agent or obstacle. An IF can also change dynamically according to parameters, such as the walking speed of the source agent. IFs can be easily combined with other aspects of crowd simulation, such as collision avoidance. Using an implementation of IFs in a real-time crowd simulation framework, we demonstrate the capabilities of IFs in various scenarios. This includes game-like scenarios where the crowd responds to a user-controlled avatar. We also present an interactive tool that computes an IF based on input sketches. This IF editor lets users intuitively and quickly design new types of behavior, without the need for programming extra behavioral rules. We thoroughly evaluate the efficacy of the IF editor through a user study, which demonstrates that our method enables non-expert users to easily enrich any agent-based crowd simulation with new agent interactions.
MULTIFILE
Nederland kent ongeveer 220.000 bedrijfsongevallen per jaar (met 60 mensen die overlijden). Vandaar dat elke werkgever verplicht is om bedrijfshulpverlening (BHV) te organiseren, waaronder BHV-trainingen. Desondanks brengt slechts een-derde van alle bedrijven de arbeidsrisico’s in kaart via een Risico-Inventarisatie & Evaluatie (RI&E) en blijft het aandeel werknemers met een arbeidsongeval hoog. Daarom wordt er continu geïnnoveerd om BHV-trainingen te optimaliseren, o.a. door middel van Virtual Reality (VR). VR is niet nieuw, maar is wel doorontwikkeld en betaalbaarder geworden. VR biedt de mogelijkheid om veilige realistische BHV-noodsimulaties te ontwikkelen waarbij de cursist het gevoel heeft daar echt te zijn. Ondanks de toename in VR-BHV-trainingen, is er weinig onderzoek gedaan naar het effect van VR in BHV-trainingen en zijn resultaten tegenstrijdig. Daarnaast zijn er nieuwe technologische ontwikkelingen die het mogelijk maken om kijkgedrag te meten in VR m.b.v. Eye-Tracking. Tijdens een BHV-training kan met Eye-Tracking gemeten worden hoe een instructie wordt opgevolgd, of cursisten worden afgeleid en belangrijke elementen (gevaar en oplossingen) waarnemen tijdens de simulatie. Echter, een BHV-training met VR en Eye-Tracking (interacties) bestaat niet. In dit project wordt een prototype ontwikkeld waarin Eye-Tracking wordt verwerkt in een 2021 ontwikkelde VR-BHV-training, waarin noodsituaties zoals een kantoorbrand worden gesimuleerd (de BHVR-toepassing). Door middel van een experiment zal het prototype getest worden om zo voor een deel de vraag te beantwoorden in hoeverre en op welke manier Eye-Tracking in VR een meerwaarde biedt voor (RI&E) BHV-trainingen. Dit project sluit daarmee aan op het missie-gedreven innovatiebeleid ‘De Veiligheidsprofessional’ en helpt het MKB dat vaak middelen en kennis ontbreekt voor onderzoek naar effectiviteit rondom innovatieve-technologieën in educatie/training. Het project levert onder meer een prototype op, een productie-rapport en onderzoeks-artikel, en staat open voor nieuwe deelnemers bij het schrijven van een grotere aanvraag rondom de toepassing en effect van VR en Eye-Tracking in BHV-trainingen.
The Netherlands has approximately 220,000 industrial accidents per year (with 60 people who die). That is why every employer is obliged to organize company emergency response (BHV), including emergency response training. Despite this, only one-third of all companies map out their occupational risks via a Risk Inventory & Evaluation (RI&E) and the share of employees with an occupational accident remains high. That is why there is continuous innovation to optimize emergency response training, for example by means of Virtual Reality (VR). VR is not new, but it has evolved and become more affordable. VR offers the possibility to develop safe realistic emergency response simulations where the student has the feeling that they are really there. Despite the increase in VR-BHV training, little research has been done on the effect of VR in ER training and results are contradictory. In addition, there are new technological developments that make it possible to measure viewing behavior in VR using Eye-Tracking. During an emergency response training, Eye-Tracking can be used to measure how an instruction is followed, whether students are distracted and observe important elements (danger and solutions) during the simulation. However, emergency response training with VR and Eye-Tracking (interactions) does not exist. In this project, a prototype is being developed in which Eye-Tracking is incorporated into a VR-BHV training that was developed in 2021, in which emergency situations such as an office fire are simulated (the BHVR application). The prototype will be tested by means of an experiment in order to partly answer the question to what extent and in what way Eye-Tracking in VR offers added value for (RI&E) emergency response training. This project is therefore in line with the mission-driven innovation policy 'The Safety Professional' and helps SMEs that often lack resources and knowledge for research into the effectiveness of innovative technologies in education/training. The project will include a prototype, a production report and research article, and is open to new participants when writing a larger application about the application and effect of VR and Eye-Tracking in emergency response training.
In recent years, disasters are increasing in numbers, location, intensity and impact; they have become more unpredictable due to climate change, raising questions about disaster preparedness and management. Attempts by government entities at limiting the impact of disasters are insufficient, awareness and action are urgently needed at the citizen level to create awareness, develop capacity, facilitate implementation of management plans and to coordinate local action at times of uncertainty. We need a cultural and behavioral change to create resilient citizens, communities, and environments. To develop and maintain new ways of thinking has to start by anticipating long-term bottom-up resilience and collaborations. We propose to develop a serious game on a physical tabletop that allows individuals and communities to work with a moderator and to simulate disasters and individual and collective action in their locality, to mimic real-world scenarios using game mechanics and to train trainers. Two companies–Stratsims, a company specialized in game development, and Society College, an organization that aims to strengthen society, combine their expertise as changemakers. They work with Professor Carola Hein (TU Delft), who has developed knowledge about questions of disaster and rebuilding worldwide and the conditions for meaningful and long-term disaster preparedness. The partners have already reached out to relevant communities in Amsterdam and the Netherlands, including UNUN, a network of Ukrainians in the Netherlands. Jaap de Goede, an experienced strategy simulation expert, will lead outreach activities in diverse communities to train trainers and moderate workshops. This game will be highly relevant for citizens to help grow awareness and capacity for preparing for and coping with disasters in a bottom-up fashion. The toolkit will be available for download and printing open access, and for purchase. The team will offer training and facilitate workshops working with local communities to initiate bottom-up change in policy making and planning.