Climate change is one of the key societal challenges of our times, and its debate takes place across scientific disciplines and into the public realm, traversing platforms, sources, and fields of study. The analysis of such mediated debates has a strong tradition, which started in communication science and has since then been applied across a wide range of academic disciplines.So-called ‘content analysis’ provides a means to study (mass) media content in many media shapes and formats to retrieve signs of the zeitgeist, such as cultural phenomena, representation of certain groups, and the resonance of political viewpoints. In the era of big data and digital culture, in which websites and social media platforms produce massive amounts of content and network this through hyperlinks and social media buttons, content analysis needs to become adaptive to the many ways in which digital platforms and engines handle content.This book introduces Networked Content Analysis as a digital research approach, which offers ways forward for students and researchers who want to work with digital methods and tools to study online content. Besides providing a thorough theoretical framework, the book demonstrates new tools and methods for research through case studies that study the climate change debate with search engines, Twitter, and the encyclopedia project of Wikipedia.
MULTIFILE
Social media is a transformative digital technology, collapsing the “six degrees ofseparation” which have previously characterized many social networks, and breaking down many of the barriers to individuals communicating with each other. Some commentators suggest that this is having profound effects across society, that social media have opened up new channels for public debates and have revolutionized the communication of prominent public issues such as climate change. In this article we provide the first systematic and critical review of the literature on social media and climate change. We highlight three key findings from the literature: a substantial bias toward Twitter studies, the prevalent approaches to researching climate change on social media (publics, themes, and professional communication), and important empirical findings (the use of mainstream information sources, discussions of “settled science,” polarization, and responses to temperature anomalies).Following this, we identify gaps in the existing literature that should beaddressed by future research: namely, researchers should consider qualitativestudies, visual communication and alternative social media platforms to Twitter.We conclude by arguing for further research that goes beyond a focus on sciencecommunication to a deeper examination of how publics imagine climate changeand its future role in social life.
European Union’s vulnerability to climate change stretches far beyond its borders because many of its economic sectors, such as meat and dairy, use raw materials sourced from far afield. Cross-border climate vulnerability is a relatively new subject in scientific literature, while of high societal and economic relevance. We quantify these climate vulnerabilities with a focus on drought risk and assessed them for 2030, 2050, 2085 and for RCP 2.6 and 6.0 climate scenarios. Here we find that more than 44% of the EU agricultural imports will become highly vulnerable to drought in future because of climate change. The drought severity in production locations of the agricultural imports in 2050 will increase by 35% compared to current levels of drought severity. This is particularly valid for imports that originate from Brazil, Indonesia, Vietnam, Thailand, India and Turkey. At the same time, imports from Russia, Nigeria, Peru, Ecuador, Uganda and Kenya will be less vulnerable in future. We also report that the climate vulnerabilities of meat and dairy, chocolate (cocoa), coffee, palm oil-based food and cosmetic sectors mainly lie outside the EU borders rather than inside.
MULTIFILE
The primary objective of the project is to identify policies for the transformation of the Norwegian tourism sector to become resilient to climate change and carbon risks; to maintain and develop its economic benefits; and to significantly reduce its emissions-intensity per unit of economic output. Collaborative partnersStiftinga Vestlandforsking, Stiftelsen Handelshoyskolen, Stat Sentralbyra, Norges Handelshoyskole, Stiftelsen Nordlandsforskning, Fjord Norge, Hurtigruten, Neroyfjorden Verdsarvpark, Uni Waterloo, Uni Queensland, Desinasjon Voss, Stift Geirangerfjorden Verdsarv, Hogskulen Pa Vestlandet.
Project investigating the climate risk exposure of tourism destinations to develop a climate risk assessment methodology and tools for tourism destinations to manage climate risks.
‘Dieren in de dijk’ aims to address the issue of animal burrows in earthen levees, which compromise the integrity of flood protection systems in low-lying areas. Earthen levees attract animals that dig tunnels and cause damages, yet there is limited scientific knowledge on the extent of the problem and effective approaches to mitigate the risk. Recent experimental research has demonstrated the severe impact of animal burrows on levee safety, raising concerns among levee management authorities. The consortium's ambition is to provide levee managers with validated action perspectives for managing animal burrows, transitioning from a reactive to a proactive risk-based management approach. The objectives of the project include improving failure probability estimation in levee sections with animal burrows and enhancing risk mitigation capacity. This involves understanding animal behavior and failure processes, reviewing existing and testing new deterrence, detection, and monitoring approaches, and offering action perspectives for levee managers. Results will be integrated into an open-access wiki-platform for guidance of professionals and in education of the next generation. The project's methodology involves focus groups to review the state-of-the-art and set the scene for subsequent steps, fact-finding fieldwork to develop and evaluate risk reduction measures, modeling failure processes, and processing diverse quantitative and qualitative data. Progress workshops and collaboration with stakeholders will ensure relevant and supported solutions. By addressing the knowledge gaps and providing practical guidance, the project aims to enable levee managers to effectively manage animal burrows in levees, both during routine maintenance and high-water emergencies. With the increasing frequency of high river discharges and storm surges due to climate change, early detection and repair of animal burrows become even more crucial. The project's outcomes will contribute to a long-term vision of proactive risk-based management for levees, safeguarding the Netherlands and Belgium against flood risks.