The retirement phase is an opportunity to integrate healthy (nutrition/exercise) habits into daily life. We conducted this systematic review to assess which nutrition and exercise interventions most effectively improve body composition (fat/muscle mass), body mass index (BMI), and waist circumference (WC) in persons with obesity/overweight near retirement age (ages 55–70 y). We conducted a systematic review and network meta-analysis (NMA) of randomized controlled trials, searching 4 databases from their inception up to July 12, 2022. The NMA was based on a random effects model, pooled mean differences, standardized mean differences, their 95% confidence intervals, and correlations with multi-arm studies. Subgroup and sensitivity analyses were also conducted. Ninety-two studies were included, 66 of which with 4957 participants could be used for the NMA. Identified interventions were clustered into 12 groups: no intervention, energy restriction (i.e., 500–1000 kcal), energy restriction plus high-protein intake (1.1–1.7 g/kg/body weight), intermittent fasting, mixed exercise (aerobic and resistance), resistance training, aerobic training, high protein plus resistance training, energy restriction plus high protein plus exercise, energy restriction plus resistance training, energy restriction plus aerobic training, and energy restriction plus mixed exercise. Intervention durations ranged from 8 wk to 6 mo. Body fat was reduced with energy restriction plus any exercise or plus high-protein intake. Energy restriction alone was less effective and tended to decrease muscle mass. Muscle mass was only significantly increased with mixed exercise. All other interventions including exercise effectively preserved muscle mass. A BMI and/or WC decrease was achieved with all interventions except aerobic training/resistance training alone or resistance training plus high protein. Overall, the most effective strategy for nearly all outcomes was combining energy restriction with resistance training or mixed exercise and high protein. Health care professionals involved in the management of persons with obesity need to be aware that an energy-restricted diet alone may contribute to sarcopenic obesity in persons near retirement age.This network meta-analysis is registered at https://www.crd.york.ac.uk/prospero/ as CRD42021276465.
MULTIFILE
The European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity (EASO) launched the Sarcopenic Obesity Global Leadership Initiative (SOGLI) to reach expert consensus on a definition and diagnostic criteria for Sarcopenic Obesity (SO). The present paper describes the proceeding of the Sarcopenic Obesity Global Leadership Initiative (SOGLI) meeting that was held on November 25th and 26th, 2022 in Rome, Italy. This consortium involved the participation of 50 researchers from different geographic regions and countries. The document outlines an agenda advocated by the SOGLI expert panel regarding the pathophysiology, screening, diagnosis, staging and treatment of SO that needs to be prioritized for future research in the field.
Background: Sarcopenic obesity (SO) is an increasing phenomenon and has been linked to several negative health consequences. The aim of this umbrella review is the assessment of effectiveness and certainty of evidence of nutrition and exercise interventions in persons with SO. Method: We searched for meta-analyses of RCTs in PubMed, EMBASE and CENTRAL that had been conducted in the last five years, focusing on studies on the treatment and prevention of SO. The primary endpoints were parameters for SO, such as body fat in %, skeletal muscle mass index (SMMI), gait speed, leg strength and grip strength. The methodological quality was evaluated using AMSTAR and the certainty of evidence was assessed using GRADE. Results: Four systematic reviews with between 30 to 225 participants were included in the umbrella review. These examined four exercise interventions, two nutrition interventions and four interventions that combined nutrition and exercise. Resistance training was the most frequently studied intervention and was found to improve gait speed by 0.14 m/s to 0.17 m/s and lower leg strength by 9.97 kg. Resistance, aerobic, mixed exercise and hypocaloric diet combined with protein supplementation is not significantly effective on selected outcomes for persons with SO compared to no intervention. The low number of primary studies included in the reviews resulted in moderate to very low certainty of evidence. Conclusion: Despite the lack in certainty of evidence, resistance training may be a suitable intervention for persons with SO, in particular for improving muscle function. Nevertheless, further research is necessary to strengthen the evidence.
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.
More and more aged people are joining the traffic, either using a passenger car or through a special low speed two-seater for in-city use. For elderly people, self-management in staying mobile is an essential part of their quality of life. However, with increased involvement of elderly in traffic, the risk of serious accidents increases, especially in cities. Fortunately, a rapid development of innovative technology is shown in vehicle design, with focus on advanced driver support, herewith referred to as ‘ambient intelligence’. This holds a promise to improve the safety situation, under the condition that adaption to the elderly driver’s need is accounted for. And that is not a straightforward issue, since ‘no size fits all’. With increasing age, we see an increased variety in driving skills with emphasis on cognitive, perceptual and physical limitations. In addition, people may suffer from diseases with a neurological background or other (cardiopulmonary disease, obesity or diabetes). The partners in this project have expressed the need to survey the feasibility of ‘ambient intelligence’ technology for low-speed vehicles also addressing E-Health functions to bring people safely home or involve medical help in case of health-critical situations. The MAX Mobiel make their vehicle available for that, and will help to guard the elder customer demand. The HAN Automotive Research team carries out the research, in cooperation with the HAN professorship on E-Health. Hence, both the automotive technology part of the HAN University of Applied Sciences as well as expertise from the Health oriented part of the HAN are included, being essential to successfully extend the relevant technologies to a fully integrated elderly driver support system, in the future. Noldus Information Technology is involved on the basis of their knowledge in human monitoring (drive lab) and data synchronization. The St. Maartenskliniek (Nijmegen) brings in their experience with people being restricted in physical or neurological sense.