In the project the students were asked to design a material bank to facilitate a circular construction industry. The insights they gained were used to create opportunities to renovate the road ' 'Griffiersveld” circularly. This research report was written by three students involved in the course "Industrial and sustainable building" of Saxion University of Applied Sciences.
MULTIFILE
The Design-to-Robotic-Production and -Assembly (D2RP&A) process developed at Delft University of Technology (DUT) has been scaled up to building size by prototyping of-site a 3.30 m high fragment of a larger spaceframe structure The fragment consists of wooden linear elements connected to a polymer node printed at 3D Robot Printing and panels robotically milled at Amsterdam University of Applied Science (AUAS). It has been evaluated for suitability for assembly on-site without temporary support while relying on human-robot collaboration. The constructed architectural hybrid structure is proof of concept for an on- and off-site D2RP&A approach that is envisioned to be implemented using a range of robots able to possibly address all phases of construction in the future.
This deliverable focuses on the construction industry of the Netherlands.The construction industry has a reputation for being inefficient. Innovation in construction logistics is needed to ensure that cities stay liveable. To create innovation in constructionlogistics, collaboration between stakeholders is necessary. However, the lack of reliable quantitative data is a problem. Reliable quantitative data are necessary to convince stakeholders for new collaborations that are needed for innovations in construction logistics. There is, therefore, a need to examine the current state of construction logistics calculation models. The integrated logistics concept (ILC) is used to examine construction logistics processes and to address factors that obstruct the development of construction logistics calculation models.