Computational thinking (CT) skills are crucial for every modern profession in which large amounts of data are processed. In K-12 curricula, CT skills are often taught in separate programming courses. However, without specific instructions, CT skills are not automatically transferred to other domains in the curriculum when they are developed while learning to program in a separate programming course. In modern professions, CT is often applied in the context of a specific domain. Therefore, learning CT skills in other domains, as opposed to computer science, could be of great value. CT and domain-specific subjects can be combined in different ways. In the CT literature, a distinction can be made among CT applications that substitute, augment, modify or redefine the original subject. On the substitute level, CT replaces exercises but CT is not necessary for reaching the learning outcomes. On the redefining level, CT changes the questions that can be posed within the subject, and learning objectives and assessment are integrated. In this short paper, we present examples of how CT and history, mathematics, biology and language subjects can be combined at all four levels. These examples and the framework on which they are based provide a guideline for design-based research on CT and subject integration.
Extended Reality (XR) technologies—including virtual reality (VR), augmented reality (AR), and mixed reality (MR)—offer transformative opportunities for education by enabling immersive and interactive learning experiences. In this study, we employed a mixed-methods approach that combined systematic desk research with an expert member check to evaluate existing pedagogical frameworks for XR integration. We analyzed several established models (e.g., TPACK, TIM, SAMR, CAMIL, and DigCompEdu) to assess their strengths and limitations in addressing the unique competencies required for XRsupported teaching. Our results indicate that, while these models offer valuable insights into technology integration, they often fall short in specifying XR-specific competencies. Consequently, we extended the DigCompEdu framework by identifying and refining concrete building blocks for teacher professionalization in XR. The conclusions drawn from this research underscore the necessity for targeted professional development that equips educators with the practical skills needed to effectively implement XR in diverse educational settings, thereby providing actionable strategies for fostering digital innovation in teaching and learning.
MULTIFILE
This small-scale observational study explores how Dutch bilingual education history teachers (BHTs) focus on the L2 component in their CLIL-lessons. We observed and rated eight BHTs on five language teaching categories. Results show that Dutch BHTs focus more strongly on using the L2 to teach subject content and that they tend to be less engaged in teaching specific second language topics, such as focus on form or language learning strategies. Further results and suggestions for improving the BHTs’ L2 focus are discussed together with a plea for a CLIL definition that is more in line with the everyday reality of the CLIL classroom.