Abstract: To gather insight on how Health in All Policies (HiAP) is applied in practice, we carried out a case study on transport policies intended to stimulate a shift from car use to bicycling. We reviewed 3 years (2010, 2011, and 2012) of national budgets and policy documents in the Netherlands, followed by two focus group sessions and a second round of document analysis.
Renewing agricultural grasslands for improved yields and forage quality generally involves eliminating standing vegetation with herbicides, ploughing and reseeding. However, grassland renewal may negatively affect soil quality and related ecosystem services. On clay soil in the north of the Netherlands, we measured grass productivity and soil chemical parameters of ‘young’ (5–15 years since last grassland renewal) and ‘old’ (>20 years since last grassland renewal) permanent grasslands, located as pairs at 10 different dairy farms. We found no significant difference with old permanent grassland in herbage dry matter yield and fertilizer nitrogen (N) response, whereas herbage N yield was lower in young permanent grassland. Moreover, the young grassland soil contained less soil organic matter (SOM), soil organic carbon (C) and soil organic N compared to the old grassland soil. Grass productivity was positively correlated with SOM and related parameters such as soil organic C, soil organic N and potentially mineralizable N. We conclude that on clay soils with 70% desirable grasses (i.e., Lolium perenne and Phleum pratense) or more, the presumed yield benefit of grassland renewal is offset by a loss of soil quality (SOM and N-total). The current practice of renewing grassland after 10 years without considering the botanical composition, is counter-productive and not sustainable.
MULTIFILE
Caribbean coral reefs are in decline and the deployment of artificial reefs, structures on the sea bottom that mimic one or more characteristics of a natural reef, is increasingly often considered to sustain ecosystem services. Independent of their specific purposes, it is essential that artificial reefs do not negatively affect the already stressed surrounding habitat. To evaluate the ecological effects of artificial reefs in the Caribbean, an analysis was performed on 212 artificial reefs that were deployed in the Greater Caribbean between 1960 and 2018, based on cases documented in grey (n = 158) and scientific (n = 54) literature. Depending on the availability of data, reef type and purpose were linked to ecological effects and fisheries management practices around the artificial reefs. The three most common purposes to deploy artificial reefs were to create new dive sites (41%), toperform research (22%) and to support ecosystem restoration (18%), mainly by stimulating diversity. Ship wrecks (44%), reef balls© (13%) and piles of concrete construction blocks (11%) were the most-often deployed artificial reef structures and metal and concrete were the most-used materials. The ecological development onartificial reefs in the Caribbean appeared to be severely understudied. Research and monitoring has mostly been done on small experimental reefs that had been specifically designed for science, whereas the most commonly deployed artificial reef types have hardly been evaluated. Studies that systematically compare the ecological functioning of different artificial reef types are virtually non-existent in the Caribbean and should be a research priority, including the efficacy of new designs and materials. Comparisons with natural reef ecosystems are scarce. Artificial reefs can harbor high fish densities and species richness, but both fish and benthos assemblages often remain distinct from natural ecosystems. Studies from other parts of the world show that artificial reefs can influence the surrounding ecosystem by introducing non-indigenous species and by leaking iron. As artificial reefs attract part of their marine organisms from surrounding habitats, intensive exploitation by fishers, without clear management, can adversely affect the fish stocks in the surrounding area and thus counteract any potential ecosystem benefits. This study shows that over 80% of artificial reefs in the Caribbean remain accessible tofishers and are a risk to the surrounding habitat. To ensure artificial reefs and their fisheries do not negatively affect the surrounding ecosystem, it is imperative to include artificial reefs, their fisheries and the surrounding ecosystem in monitoring programs and management plans and to create no-take zones around artificial reefs that are not monitored.
MULTIFILE