This study presents a detailed buckling analysis of laminated composites reinforced by multi-walled carbon nanotube (MWCNT) inclusions using a multiscale computational framework. It combines multiple analytical and computational techniques to assess the performance of these composites under varying hygro-thermo-mechanical conditions. The model incorporates nanoscopic MWCNT characteristics, estimates orthotropic constants, and investigates the impact of various factors on the critical buckling load of MWCNT-based laminates. Comparison with existing data validates our approach, marking the first usage of the multiscale finite element method for predicting the buckling behaviour of MWCNT-reinforced laminates. This research offers valuable design insights for various industries including aerospace and automotive.