Fingermarks are highly relevant in criminal investigations for individualization purposes. In some cases, the question in court changes from ‘Who is the source of the fingermarks?’ to ‘How did the fingermark end up on the surface?’. In this paper, we explore evaluation of fingermarks given activity level propositions by using Bayesian networks. The variables that provide information on activity level questions for fingermarks are identified and their current state of knowledge with regards to fingermarks is discussed. We identified the variables transfer, persistency, recovery, background fingermarks, location of the fingermarks, direction of the fingermarks, the area of friction ridge skin that left the mark and pressure distortions as variables that may provide information on how a fingermark ended up on a surface. Using three case examples, we show how Bayesian networks can be used for the evaluation of fingermarks given activity level propositions.