We analyzed a large data set from a mobile exercise application to find the preferred running situations of a large number of users. We categorized the users according totheir running behaviors (i.e. regularly active, or rarely ac-tive over the year), then studied the influence of 15 features, including temporal, geographical and weather-based features for different user groups. We found that geographical features influence the behavior of less active runners.
Purpose: This is a position paper describing the elements of an international framework for assistive techhnology provision that could guide the development of policies, systems and service delivery procedures across the world. It describes general requirements, quality criteria and possible approaches that may help to enhance the accessibility of affordable and high quality assistive technology solutions. Materials and methods: The paper is based on the experience of the authors, an analysis of the existing literature and the inputs from many colleagues in the field of assistive technology provision. It includes the results of discussions of an earlier version of the paper during an international conference on the topic in August 2017. Results and conclusion: The paper ends with the recommendation to develop an international standard for assistive technology provision. Such a standard can have a major impact on the accessibility of AT for people with disabilities. The paper outlines some the key elements to be included in a standard.
With a growing number of electric vehicles (EVs) on the road and charging infrastructure investments lagging, occupation of installed charging stations is growing and available charging points for EV drivers are becoming scarce. Installing more charging infrastructure is problematic from both a public(tax payers money, parking availability) and private (business case) perspective. Increasing the utilization of available charging stations is one of the solutions to satisfy the growing charging need of EV drivers and managing other stakeholders interests. Currently, in the Netherlands only 15-25% of the time connected to a public charging station is actually used for charging. The longest 4% of all sessions account for over 20% of all time connected while barely using this time for actually charging. The behaviour in which EV users stay connected to a charging station longer than necessary to charge their car is called “charging station hogging”. Using a large dataset (1.3 million sessions) on publiccharging infrastructure usage, this paper analyses the inefficient use of charging stations along three axes: where the hogging takes place (spatial), by whom (the characteristics of the user) and during which time frames (day, week and year). Using the results potential solutions are evaluated and assessed including their potential and pitfalls.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
The Dutch floriculture is globally leading, and its products, knowledge and skills are important export products. New challenges in the European research agenda include sustainable use of raw materials such as fertilizer, water and energy, and limiting the use of pesticides. Greenhouse growers however have little control over crop growth conditions in the greenhouse at individual plant level. The purpose of this project, ‘HiPerGreen’, is to provide greenhouse owners with new methods to monitor the crop growth conditions in their greenhouse at plant level, compare the measured growth conditions and the measured growth with expected conditions and expected growth, to point out areas with deviations, recommend counter-measures and ultimately to increase their crop yield. The main research question is: How can we gather, process and present greenhouse crop growth parameters over large scale greenhouses in an economical way and ultimately improve crop yield? To provide an answer to this question, a team of university researchers and companies will cooperate in this applied research project to cover several different fields of expertise The application target is floriculture: the production of ornamental pot plants and cut flowers. Participating companies are engaged in the cultivation of pot plans, flowers and suppliers of greenhouse technology. Most of the parties fall in the SME (MKB) category, in line with the RAAK MKB objectives.Finally, the Demokwekerij and Hortipoint (the publisher of the international newsletter on floriculture) are closely involved. The project will develop new knowledge for a smart and rugged data infrastructure for growth monitoring and growth modeling in the greenhouse. In total the project will involve approximately 12 (teacher) researchers from the universities and about 60 students, who will work in the form of internships and undergraduate studies of interesting questions directly from the participating companies.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.