This paper introduces a novel distributed algorithm designed to optimize the deployment of access points within Mobile Ad Hoc Networks (MANETs) for better service quality in infrastructure less environments. The algorithm operates based on local, independent execution by each network node, thus ensuring a high degree of scalability and adaptability to changing network conditions. The primary focus is to match the spatial distribution of access points with the distribution of client devices while maintaining strong connectivity to the network root. Using autonomous decision-making and choreographed path-planning, this algorithm bridges the gap between demand-responsive network service provision and the maintenance of crucial network connectivity links. The assessment of the performance of this approach is motivated by using numerical results generated by simulations.
DOCUMENT
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
DOCUMENT
Standard mass-production is a well-known manufacturing concept. To make small quantities or even single items of a product according to user specifications at an affordable price, alternative agile production paradigms should be investigated and developed. The system presented in this paper is based on a grid of cheap reconfigurable production units, called equiplets. A grid of these equiplets is capable to produce a variety of different products in parallel at an affordable price. The underlying agent-based software for this system is responsible for the agile manufacturing. An important aspect of this type of manufacturing is the transport of the products along the available equiplets. This transport of the products from equiplet to equiplet is quite different from standard production. Every product can have its own unique path along the equiplets. In this paper several topologies are discussed and investigated. Also, the planning and scheduling in relation to the transport constraints is subject of this study. Some possibilities of realization are discussed and simulations are used to generate results with the focus on efficiency and usability for different topologies and layouts of the grid and its internal transport system.
DOCUMENT
Author supplied: In a production environment where different products are being made in parallel, the path planning for every product can be different. The model proposed in this paper is based on a production environment where the production machines are placed in a grid. A software entity, called product agent, is responsible for the manufacturing of a single product. The product agent will plan a path along the production machines needed for that specific product. In this paper, an optimization is proposed that will reduce the amount of transport between the production machines. The effect of two factors that influence the possibilities for reductions is shown in a simulation, using the proposed optimization scheme. These two factors are the redundancy of production steps in the grid and the
DOCUMENT
Standard mass-production is a well-known manufacturing concept. To make small quantities or even single items of a product according to user specifications at an affordable price, alternative agile production paradigms should be investigated and developed. The system presented in this article is based on a grid of cheap reconfigurable production units, called equiplets. A grid of these equiplets is capable to produce a variety of different products in parallel at an affordable price. The underlying agent-based software for this system is responsible for the agile manufacturing. An important aspect of this type of manufacturing is the transport of the products along the available equiplets. This transport of the products from equiplet to equiplet is quite different from standard production. Every product can have its own unique path along the equiplets. In this article several topologies are discussed and investigated. Also, the planning and scheduling in relation to the transport constraints is subject of this study. Some possibilities of realization are discussed and simulations are used to generate results with the focus on efficiency and usability for different topologies and layouts of the grid and its internal transport system. Closely related with this problem is the scheduling of the production in the grid. A discussion about the maximum achievable load on the production grid and its relation with the transport system is also included.
DOCUMENT
De laatste decennia is tijd een strategische concurrentiefactor geworden in de maakindustrie (Demeter, 2013; Godinho Filho et al., 2017a; Gromova, 2020). Naast tijdige levering verwacht de klant ook keuze, maatwerk, hoge kwaliteit en een lage prijs (Siong et al., 2018; Suri, 2020). Om de door de klant gewenste korte doorlooptijd te kunnen realiseren en daarbij ook te voldoen aan zijn andere eisen, zijn flexibiliteit en aanpassingsvermogen essentieel geworden (Godinho Filho et al., 2017b; Siong et al., 2018). Quick Response Manufacturing (QRM) heeft als doel de doorlooptijd te verkorten in productieomgevingen die gekenmerkt worden door een hoge variëteit in producten en maatwerk (Suri, 2020; Siong et al., 2018). QRM kent zijn oorsprong begin jaren negentig van de vorige eeuw (Suri, 2020) en vertoont sterke gelijkenis met lean manufacturing. Het verschil met lean manufacturing is echter dat QRM zich richt op bedrijven in een omgeving met veel productvariatie. Daarnaast heeft QRM nieuwe elementen toegevoegd, zoals Paired-cell Overlapping Loops of Cards with Authorization (POLCA) en Manufacturing Critical Path Time’ (MCT)’ (Godinho Filho et al., 2017b).
DOCUMENT
The term crowdsourcing was introduced by Jeff Howe (2006). It is the act of a company or organisation to take a function once performed by employees and outsourcing it to an undefined, and usually large, network of people in the form of an open call. As communication tools to organize work have become widely available, and a well-educated global work force has come online, crowdsourcing has become an increasingly important mechanism to organize work. We discuss a categorisation of crowdsourcing, its costs and benefits and several examples. The use of crowdsourcing begins with the question which strategic goal an organisation wants to achieve, and whether the benefits outweigh the costs. We give some recommendations for adopting crowdsourcing. This usually requires a certain amount of restructuring of existing workflows and a willingness to become more open which may or may not be a welcome side effect.
DOCUMENT