Algorithms that significantly impact individuals and society should be transparent, yet they can often function as complex black boxes. Such high-risk AI systems necessitate explainability of their inner workings and decision-making processes, which is also crucial for fostering trust, understanding, and adoption of AI. Explainability is a major topic, not only in literature (Maslej et al. 2024) but also in AI regulation. The EU AI Act imposes explainability requirements on providers and deployers of high-risk AI systems. Additionally, it grants the right to explanation for individuals affected by high-risk AI systems. However, legal literature illustrates a lack of clarity and consensus regarding the definition of explainability and the interpretation of the relevant obligations of the AI Act (See e.g. Bibal et al. 2021; Nannini 2024; Sovrano et al. 2022). The practical implementation also presents further challenges, calling for an interdisciplinary approach (Gyevnar, Ferguson, and Schafer 2023; Nahar et al. 2024, 2110).Explainability can be examined from various perspectives. One such perspective concerns a functional approach, where explanations serve specific functions (Hacker and Passoth 2022). Looking at this functional perspective of explanations, my previous work elaborates on the central functions of explanations interwoven in the AI Act. Through comparative research on the evolution of the explainability provisions in soft and hard law on AI from the High-Level Expert Group on AI, Council of Europe, and OECD, my previous research establishes that explanations in the AI Act primarily serve to provide understanding of the inner workings and output of an AI system, to enable contestation of a decision, to increase usability, and to achieve legal compliance (Van Beem, ongoing work, paper presented at Bileta 2025 conference; submission expected June 2025).Moreover, my previous work reveals that the AI lifecycle is an important concept in AI policy and legal documents. The AI lifecycle includes phases that lead to the design, development, and deployment of an AI system (Silva and Alahakoon 2022). The AI Act requires various explanations in each phase. The provider and deployer shall observe an explainability by design and development approach throughout the entire AI lifecycle, adapting explanations as their AI evolves equally. However, the practical side of balancing between clear, meaningful, legally compliant explanations and technical explanations proves challenging.Assessing this practical side, my current research is a case study in the agricultural sector, where AI plays an increasing role and where explainability is a necessary ingredient for adoption (EPRS 2023). The case study aims to map which legal issues AI providers, deployers, and other AI experts in field crop farming encounter. Secondly, the study explores the role of explainability (and the field of eXplainable AI) in overcoming such legal challenges. The study is conducted through further doctrinal research, case law analysis, and empirical research using interviews, integrating the legal and technical perspectives. Aiming to enhance trustworthiness and adoption of AI in agriculture, this research seeks to contribute to an interdisciplinary debate regarding the practical application of the AI Act's explainability obligations.
DOCUMENT
De opkomst van Chat GPT laat zien hoe AI ingrijpt in ons dagelijks leven en het onderwijs. Maar AI is meer dan Chat GPT: van zoekmachines tot de gezichtsherkenning in je telefoon: data en algoritmes veranderen de levens van onze studenten en hun toekomstige werkveld. Wat betekent dit voor de opleidingen in het HBO waar voor wij werken? Voor de inspiratie-sessie De maatschappelijke impact van AI tijdens het HU Onderwijsfestival 2023 hebben wij onze collega’s uitgenodigd om samen met ons mee te denken over de recente AI-ontwikkelingen. We keken niet alleen naar de technologie, maar juist ook naar de maatschappelijke impact en wat de kansen en bedreigingen van AI zijn voor een open, rechtvaardige en duurzame samenleving. Het gesprek voerde we met onze collega’s (zowel docenten als medewerkers van de diensten) aan de hand van drie casussen met. De verzamelde resultaten en inzichten van deze gesprekken zijn samengebracht op een speciaal ontwikkelde poster voor de workshop (zie figuur 1). We hebben deze inzichten gebundeld en hieronder zijn ze te lezen.
DOCUMENT
poster voor de EuSoMII Annual Meeting in Pisa, Italië in oktober 2023. PURPOSE & LEARNING OBJECTIVE Artificial Intelligence (AI) technologies are gaining popularity for their ability to autonomously perform tasks and mimic human reasoning [1, 2]. Especially within the medical industry, the implementation of AI solutions has seen an increasing pace [3]. However, the field of radiology is not yet transformed with the promised value of AI, as knowledge on the effective use and implementation of AI is falling behind due to a number of causes: 1) Reactive/passive modes of learning are dominant 2) Existing developments are fragmented 3) Lack of expertise and differing perspectives 4) Lack of effective learning space Learning communities can help overcome these problems and address the complexities that come with human-technology configurations [4]. As the impact of a technology is dependent on its social management and implementation processes [5], our research question then becomes: How do we design, configure, and manage a Learning Community to maximize the impact of AI solutions in medicine?
DOCUMENT
This white paper is the result of a research project by Hogeschool Utrecht, Floryn, Researchable, and De Volksbank in the period November 2021-November 2022. The research project was a KIEM project1 granted by the Taskforce for Applied Research SIA. The goal of the research project was to identify the aspects that play a role in the implementation of the explainability of artificial intelligence (AI) systems in the Dutch financial sector. In this white paper, we present a checklist of the aspects that we derived from this research. The checklist contains checkpoints and related questions that need consideration to make explainability-related choices in different stages of the AI lifecycle. The goal of the checklist is to give designers and developers of AI systems a tool to ensure the AI system will give proper and meaningful explanations to each stakeholder.
MULTIFILE
This guide was developed for designers and developers of AI systems, with the goal of ensuring that these systems are sufficiently explainable. Sufficient here means that it meets the legal requirements from AI Act and GDPR and that users can use the system properly. Explainability of decisions is an important requirement in many systems and even an important principle for AI systems [HLEG19]. In many AI systems, explainability is not self-evident. AI researchers expect that the challenge of making AI explainable will only increase. For one thing, this comes from the applications: AI will be used more and more often, for larger and more sensitive decisions. On the other hand, organizations are making better and better models, for example, by using more different inputs. With more complex AI models, it is often less clear how a decision was made. Organizations that will deploy AI must take into account users' need for explanations. Systems that use AI should be designed to provide the user with appropriate explanations. In this guide, we first explain the legal requirements for explainability of AI systems. These come from the GDPR and the AI Act. Next, we explain how AI is used in the financial sector and elaborate on one problem in detail. For this problem, we then show how the user interface can be modified to make the AI explainable. These designs serve as prototypical examples that can be adapted to new problems. This guidance is based on explainability of AI systems for the financial sector. However, the advice can also be used in other sectors.
DOCUMENT
Artificial Intelligence (AI) offers organizations unprecedented opportunities. However, one of the risks of using AI is that its outcomes and inner workings are not intelligible. In industries where trust is critical, such as healthcare and finance, explainable AI (XAI) is a necessity. However, the implementation of XAI is not straightforward, as it requires addressing both technical and social aspects. Previous studies on XAI primarily focused on either technical or social aspects and lacked a practical perspective. This study aims to empirically examine the XAI related aspects faced by developers, users, and managers of AI systems during the development process of the AI system. To this end, a multiple case study was conducted in two Dutch financial services companies using four use cases. Our findings reveal a wide range of aspects that must be considered during XAI implementation, which we grouped and integrated into a conceptual model. This model helps practitioners to make informed decisions when developing XAI. We argue that the diversity of aspects to consider necessitates an XAI “by design” approach, especially in high-risk use cases in industries where the stakes are high such as finance, public services, and healthcare. As such, the conceptual model offers a taxonomy for method engineering of XAI related methods, techniques, and tools.
MULTIFILE
An extensive inventory of 137 Dutch SMEs regarding the most important considerations regarding the use of emerging digital technologies shows that the selection process is difficult. En trepreneurs wonder which AI application suits them best and what the added (innovative) value is and how they can implement it. This outcome is a clear signal from SMEs to researchers in knowledge institutions and to developers of AI services and applications: Help! Which AI should I choose? With a consortium of students, researchers, and SMEs, we are creating an approach that will help SMEs make the most suitable AI choice. The project develops a data-driven advisory tool that helps SMEs choose, develop, implement and use AI applications focusing on four highly ranked topics.
LINK
Whitepaper: The use of AI is on the rise in the financial sector. Utilizing machine learning algorithms to make decisions and predictions based on the available data can be highly valuable. AI offers benefits to both financial service providers and its customers by improving service and reducing costs. Examples of AI use cases in the financial sector are: identity verification in client onboarding, transaction data analysis, fraud detection in claims management, anti-money laundering monitoring, price differentiation in car insurance, automated analysis of legal documents, and the processing of loan applications.
DOCUMENT
Artificial intelligence (AI) is a technology which is increasingly being utilised in society and the economy worldwide, but there is much disquiet over problematic and dangerous implementations of AI, or indeed even AI itself deciding to do dangerous and problematic actions. These developments have led to concerns about whether and how AI systems currently adhere to and will adhere to ethical standards, stimulating a global and multistakeholder conversation on AI ethics and the production of AI governance initiatives. Such developments form the basis for this chapter, where we give an insight into what is happening in Australia, China, the European Union, India and the United States. We commence with some background to the AI ethics and regulation debates, before proceedings to give an overview of what is happening in different countries and regions, namely Australia, China, the European Union (including national level activities in Germany), India and the United States. We provide an analysis of these country profiles, with particular emphasis on the relationship between ethics and law in each location. Overall we find that AI governance and ethics initiatives are most developed in China and the European Union, but the United States has been catching up in the last eighteen months.
DOCUMENT
From the article: The ethics guidelines put forward by the AI High Level Expert Group (AI-HLEG) present a list of seven key requirements that Human-centered, trustworthy AI systems should meet. These guidelines are useful for the evaluation of AI systems, but can be complemented by applied methods and tools for the development of trustworthy AI systems in practice. In this position paper we propose a framework for translating the AI-HLEG ethics guidelines into the specific context within which an AI system operates. This approach aligns well with a set of Agile principles commonly employed in software engineering. http://ceur-ws.org/Vol-2659/
DOCUMENT