INTRODUCTION: Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people.OBJECTIVES: to assess the consumption of protein sources as well as the distribution of protein sources over the day in community-dwelling, frail and institutionalized elderly people.METHODS: Habitual dietary intake was evaluated using 2- and 3-day food records collected from various studies involving 739 community-dwelling, 321 frail and 219 institutionalized elderly people.RESULTS: Daily protein intake averaged 71 ± 18 g/day in community-dwelling, 71 ± 20 g/day in frail and 58 ± 16 g/day in institutionalized elderly people and accounted for 16% ± 3%, 16% ± 3% and 17% ± 3% of their energy intake, respectively. Dietary protein intake ranged from 10 to 12 g at breakfast, 15 to 23 g at lunch and 24 to 31 g at dinner contributing together over 80% of daily protein intake. The majority of dietary protein consumed originated from animal sources (≥60%) with meat and dairy as dominant sources. Thus, 40% of the protein intake in community-dwelling, 37% in frail and 29% in institutionalized elderly originated from plant based protein sources with bread as the principle source. Plant based proteins contributed for >50% of protein intake at breakfast and between 34% and 37% at lunch, with bread as the main source. During dinner, >70% of the protein intake originated from animal protein, with meat as the dominant source.CONCLUSION: Daily protein intake in these older populations is mainly (>80%) provided by the three main meals, with most protein consumed during dinner. More than 60% of daily protein intake consumed is of animal origin, with plant based protein sources representing nearly 40% of total protein consumed. During dinner, >70% of the protein intake originated from animal protein, while during breakfast and lunch a large proportion of protein is derived from plant based protein sources.
DOCUMENT
BackgroundIncreased physical activity and dietary protein intake are promising interventions to prevent or treat the age-related decline in physical performance in older adults. There are well-controlled exercise as well as dietary intervention studies that show beneficial effects on physical performance in older adults. In practice, however, weekly group based exercise or nutritional programs may not be as effective. To optimise these exercise programs for community dwelling older adults, a digitally supported and personalised home-based exercise training program has been designed aiming to improve physical performance in older adults. In addition, a protein intervention in combination with the training program may further improve physical performance in older adults.MethodsThe VITAMIN study will be a cluster randomised controlled trial with three parallel arms. In total, 240 community dwelling older adults (≥ 55 years) participating in weekly group exercise are randomly allocated into: 1) regular weekly exercise program (Control group, n = 80), 2) digitally supported personalised home-based exercise training program group (VITA group, n = 80) and 3) digitally supported personalised home-based exercise training program group plus dietary protein counselling (VITA-Pro group, n = 80). The VITAMIN study aims to evaluate effectiveness of the digitally supported personalised home-based exercise training program as well as the additional value of dietary protein on physical performance after 6 months. In addition, a 12 month follow-up measurement will assess the retaining effect of the interventions. Primary outcome is physical performance measured by the Modified Physical Performance Test (M-PPT) and relevant secondary and observational outcomes include habitual physical activity and dietary intake, body composition, cognitive performance, quality of life, compliance and tablet usage. Data will be analysed by Linear Mixed Models.DiscussionTo our knowledge, the VITAMIN study is the first study that investigates the impact of home-based exercise, protein intake as well as use of persuasive technology in the population of community dwelling older adults.Trial registrationNL56094.029.16 / NTR (TC = 5888; registered 03–06-2016).
DOCUMENT
Digitally supported dietary counselling may be helpful in increasing the protein intake in combined exercise and nutritional interventions in community-dwelling older adults. To study the effect of this approach, 212 older adults (72.2 ± 6.3 years) were randomised in three groups: control, exercise, or exercise plus dietary counselling. The dietary counselling during the 6-month intervention was a blended approach of face-to-face contacts and videoconferencing, and it was discontinued for a 6-month follow-up. Dietary protein intake, sources, product groups, resulting amino acid intake, and intake per eating occasion were assessed by a 3-day dietary record. The dietary counselling group was able to increase the protein intake by 32% at 6 months, and the intake remained 16% increased at 12 months. Protein intake mainly consisted of animal protein sources: dairy products, followed by fish and meat. This resulted in significantly more intake of essential amino acids, including leucine. The protein intake was distributed evenly over the day, resulting in more meals that reached the protein and leucine targets. Digitally supported dietary counselling was effective in increasing protein intake both per meal and per day in a lifestyle intervention in community-dwelling older adults. This was predominantly achieved by consuming more animal protein sources, particularly dairy products, and especially during breakfast and lunch.
MULTIFILE
While the creation of an energy deficit (ED) is required for weight loss, it is well documented that actual weight loss is generally lower than what expected based on the initially imposed ED, a result of adaptive mechanisms that are oppose to initial ED to result in energy balance at a lower set-point. In addition to leading to plateauing weight loss, these adaptive responses have also been implicated in weight regain and weight cycling (add consequences). Adaptions occur both on the intake side, leading to a hyperphagic state in which food intake is favored (elevated levels of hunger, appetite, cravings etc.), as well as on the expenditure side, as adaptive thermogenesis reduces energy expenditure through compensatory reductions in resting metabolic rate (RMR), non-exercise activity expenditure (NEAT) and the thermic effect of food (TEF). Two strategies that have been utilized to improve weight loss outcomes include increasing dietary protein content and increasing energy flux during weight loss. Preliminary data from our group and others demonstrate that both approaches - especially when combined - have the capacity to reduce the hyperphagic response and attenuate reductions in energy expenditure, thereby minimizing the adaptive mechanisms implicated in plateauing weight loss, weight regain and weight cycling. Past research has largely focused on one specific component of energy balance (e.g. hunger or RMR) rather than assessing the impact of these strategies on all components of energy balance. Given that all components of energy balance are strongly connected with each other and therefore can potentially negate beneficial impacts on one specific component, the primary objective of this application is to use a comprehensive approach that integrates all components of energy balance to quantify the changes in response to a high protein and high energy flux, alone and in combination, during weight loss (Fig 1). Our central hypothesis is that a combination of high protein intake and high energy flux will be most effective at minimizing both metabolic and behavioral adaptations in several components of energy balance such that the hyperphagic state and adaptive thermogenesis are attenuated to lead to superior weight loss results and long-term weight maintenance.