Over the next 10 years, the City of Amsterdam plans to develop major housing schemes provide 90,000 new homes within the existing urban fabric. At the same time, an urban renewal program is being launched to revitalize the most deprived neighbourhoods. Together, these challenges call for more evidence based designprinciples to secure liveable places. Recent development in neuroscience, provides innovative tools to examine in a measurable, cause-effect way, the relationships between the physical fabric, users’ (visual) experience and their behavior in public spaces. In neuroscience, eye-tracking technology (ET) complements brain and behavioral measures (for overview see Eckstein et al. 2017). ET is already used to evaluate the spatial orienting of attention, behavioral response and emotional and cognitive impact in neuroscience, psychology and market research (Popa et al. 2015). ET may also radically change the way we (re)design and thus, experience cities (Sita et al. 2016; Andreani 2017). Until now, eye-tracking pilot studies collected eye fixation patterns of architecture using images in a lab-setting (Lebrun 2016).In our research project Sensing Streetscapes, we take eye-tracking outdoors and explore the potential ET may offer for city design. In collaboration with the municipality of Amsterdam and the local community, the H-neighborhood is used as a single case study. The main focus for urban renewal lies in the “transition-spaces”. They connect the neighborhood with the rapidly developing adjacent areas and are vital for improving the weak social-economic status. The commonly used design principles are validated (Alexander et al. 1977; Gehl 2011, 2014; Pallasmaa 2012) and the consistency of ET is tested, alongside (walk along) interviews and behavioral observations. In the next phase, the data will be analyzed by a panel of applied psychologists and urban designers. The initial results provide valuable lessons for the use of eye-tracking in urban design research. For example, a visual pattern analysis offers more accurate images of the spatial key-elements that matter when moving through transition spaces. More sensory-based city design research is needed to gather a full understanding of the relationships between the configuration of space, users’ (visual) experience, behavioral responses and in turn, perceptual decision making.
DOCUMENT
Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
The accelerated densification of Western European cities driven by economic growth has major spatial implications for their overall livability. Often, new homes must be built within an existing urban fabric, creating higher density environments. However, the impact on the experience of these high-density environments at eye level remains unstudied and unknown. This chapter reviews two experiments that sought to understand the unconscious reception of streetscapes using eye-tracking technology to investigate the sequence of users’ (visual) experience, their behavior and perception. The research project seeks to establish more ‘evidence-based’ design guidelines for streetscapes in high-rise urban settings.This chapter reviews two experiments that sought to understand the unconscious reception of streetscapes using eye-tracking technology to investigate the sequence of users’ experience, their behavior and perception. Eye-tracking results of Experiment 1 show that the movement of pedestrians, cyclists and cars crossing the street created the most eye fixation for most participants. In general, the eye-tracking results from Experiment 2 show that participants’ eyes followed the length of the facades toward the end of the street and the horizon. The preliminary results suggest that the assessed design principles ‘Active ground floor’ and ‘Ornate facades’ might be important factors in predicting dominant eye patterns. The chapter explores the application of eye-tracking technology in urban design to gain a deeper understanding of the physical-behavioral interrelationship of streetscapes in European high-density built environments. The accelerated densification of Western European cities driven by economic growth has major spatial implications for their overall livability.
DOCUMENT
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
Nederland kent ongeveer 220.000 bedrijfsongevallen per jaar (met 60 mensen die overlijden). Vandaar dat elke werkgever verplicht is om bedrijfshulpverlening (BHV) te organiseren, waaronder BHV-trainingen. Desondanks brengt slechts een-derde van alle bedrijven de arbeidsrisico’s in kaart via een Risico-Inventarisatie & Evaluatie (RI&E) en blijft het aandeel werknemers met een arbeidsongeval hoog. Daarom wordt er continu geïnnoveerd om BHV-trainingen te optimaliseren, o.a. door middel van Virtual Reality (VR). VR is niet nieuw, maar is wel doorontwikkeld en betaalbaarder geworden. VR biedt de mogelijkheid om veilige realistische BHV-noodsimulaties te ontwikkelen waarbij de cursist het gevoel heeft daar echt te zijn. Ondanks de toename in VR-BHV-trainingen, is er weinig onderzoek gedaan naar het effect van VR in BHV-trainingen en zijn resultaten tegenstrijdig. Daarnaast zijn er nieuwe technologische ontwikkelingen die het mogelijk maken om kijkgedrag te meten in VR m.b.v. Eye-Tracking. Tijdens een BHV-training kan met Eye-Tracking gemeten worden hoe een instructie wordt opgevolgd, of cursisten worden afgeleid en belangrijke elementen (gevaar en oplossingen) waarnemen tijdens de simulatie. Echter, een BHV-training met VR en Eye-Tracking (interacties) bestaat niet. In dit project wordt een prototype ontwikkeld waarin Eye-Tracking wordt verwerkt in een 2021 ontwikkelde VR-BHV-training, waarin noodsituaties zoals een kantoorbrand worden gesimuleerd (de BHVR-toepassing). Door middel van een experiment zal het prototype getest worden om zo voor een deel de vraag te beantwoorden in hoeverre en op welke manier Eye-Tracking in VR een meerwaarde biedt voor (RI&E) BHV-trainingen. Dit project sluit daarmee aan op het missie-gedreven innovatiebeleid ‘De Veiligheidsprofessional’ en helpt het MKB dat vaak middelen en kennis ontbreekt voor onderzoek naar effectiviteit rondom innovatieve-technologieën in educatie/training. Het project levert onder meer een prototype op, een productie-rapport en onderzoeks-artikel, en staat open voor nieuwe deelnemers bij het schrijven van een grotere aanvraag rondom de toepassing en effect van VR en Eye-Tracking in BHV-trainingen.
Onze straten zijn in transitie: Verdichting door de bouw van 1 miljoen nieuwe woningen in de bestaande stad; de versnippering van nieuwe vormen van (deel)mobiliteit; vergroening; installaties en objecten voor energietransitie; de introductie van biobased en circulaire materialen; de verschraling van het winkelaanbod; de introductie van heel nieuwe typen woonmilieus. Allemaal werkt door in de straatruimte; de gedeelde publieke ruimte tussen de gebouwen die cruciaal is voor de leefkwaliteit en well-being van inwoners. Het maken van de straatruimte vindt gefragmenteerd en geleidelijk plaats. Met de bouw van 1 miljoen nieuwe woningen de komende tien jaar is de impact echter nauwelijks te overschatten. Gemeentelijke overheden bepalen de kaders en stellen de regels, maar de daadwerkelijke keuzes en uitwerkingen worden door ontwerpbureaus gemaakt. Deze MKB-ers twijfelen of de gangbare opwerpoplossingen inderdaad de well-being versterken. Zij hebben urgente behoefte aan meer evidence based kennis hierover, vernieuwde ontwerpoplossingen en kennisdeling. Met deze mkb-vraag gaat dit onderzoek aan de slag. Dit onderzoeksvoorstel richt zich op de straatruimte op ooghoogte, de nieuwe verdichtingslocaties, drie gebruikersgroepen (bewoners, passanten, bezoekers) en de impact op well-being van de huidige ontwerpoplossingen, mede in relatie tot nieuwe vereisten vanuit personenmobiliteit en vergroening. Hiertoe hebben we een consortium samengesteld van architectuur, stedenbouw, landschapsarchitectuurbureaus, brancheorganisaties en een reflectiegroep van ruimtelijk opdrachtgevers en interdisciplinaire internationale academici. We bouwen voort op ons exploratieve onderzoek Sensing Streetscapes en de daarin geteste nieuwe technologieën (artificial intelligence en eye-tracking-technologie uit de neurologie) en zetten die in om de impact van ontwerpoplossingen op de well-being van gebruikers van de straatruimte te meten – en tussentijdse resultaten in te zetten om een cultuur van reflectie en innovatie in de praktijk van de ruimtelijke ordening aan te jagen.