Background: Falls in stroke survivors can lead to serious injuries and medical costs. Fall risk in older adults can be predicted based on gait characteristics measured in daily life. Given the different gait patterns that stroke survivors exhibit it is unclear whether a similar fall-prediction model could be used in this group. Therefore the main purpose of this study was to examine whether fall-prediction models that have been used in older adults can also be used in a population of stroke survivors, or if modifications are needed, either in the cut-off values of such models, or in the gait characteristics of interest. Methods: This study investigated gait characteristics by assessing accelerations of the lower back measured during seven consecutive days in 31 non fall-prone stroke survivors, 25 fall-prone stroke survivors, 20 neurologically intact fall-prone older adults and 30 non fall-prone older adults. We created a binary logistic regression model to assess the ability of predicting falls for each gait characteristic. We included health status and the interaction between health status (stroke survivors versus older adults) and gait characteristic in the model. Results: We found four significant interactions between gait characteristics and health status. Furthermore we found another four gait characteristics that had similar predictive capacity in both stroke survivors and older adults. Conclusion: The interactions between gait characteristics and health status indicate that gait characteristics are differently associated with fall history between stroke survivors and older adults. Thus specific models are needed to predict fall risk in stroke survivors.
DOCUMENT
Current symptom detection methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not standardised and not consistent with HVAC process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to a very limited application of energy performance diagnosis systems in practice. This paper proposes detection methods to overcome these issues, based on the 4S3F (four types of symptom and three types of faults) framework. A set of generic symptoms divided into three categories (balance, energy performance and operational state symptoms) is discussed and related performance indicators are developed, using efficiencies, seasonal performance factors, capacities, and control and design-based operational indicators. The symptom detection method was applied successfully to the HVAC system of the building of The Hague University of Applied Sciences. Detection results on an annual, monthly and daily basis are discussed and compared. Link to the formail publication via its DOI https://doi.org/10.1016/j.autcon.2020.103344
DOCUMENT
Background: Interprofessional collaboration (IPC) among health and social care providers is crucial to effectively implement community-based fall prevention. Several factors hinder successful and sustainable IPC, highlighting the need to both design and evaluate context-specific implementation strategies. However, there remains a fundamental gap in the detailed description and evaluation of such strategies. Therefore, this study aims to (1) monitor the implementation process over time and (2) evaluate the impact of a multifaceted implementation strategy aimed at improving interprofessional collaboration among health and social care professionals in community-based fall prevention. Methods: This study was conducted in two districts and one municipality in the Netherlands. We conducted a longitudinal mixed-methods study with a convergent design, emphasizing qualitative methodology. Over 24 months, qualitative (focus groups and regular meetings) and quantitative (questionnaires) data were collected semi-annually from three working groups of health and social care professionals (HSCPs). Qualitative and quantitative data were initially analyzed separately, followed by an integrated analysis for comprehensive insights on themes influencing the implementation process and the impact of the strategy on IPC and implementation outcomes. Results: In total, 32 HSCPs originating from three communities participated in this study. Monitoring and evaluation of the multifaceted implementation strategy revealed four overarching themes: (1) “Network building”, including aspects and activities that contribute to network building; (2) “Team dynamics”, referring to interactions within the working groups; (3) “Coordination”, addressing the coordination of implementation and establishment of protocols and work flows; and (4) “Implementation dynamics” highlighting aspects that influence the implementation process and outcomes. Conclusions This study identified four key themes influencing the implementation process and impact of a multifaceted implementation strategy aimed at improving IPC among HSCPs in community-based fall prevention: network building, team dynamics, coordination and implementation dynamics. Monitoring and evaluation are crucial.
MULTIFILE
Frontline professionals such as social workers and civil servants play a crucial role in countering violent extremism.Because of their direct contac twith society,first liners are tasked with detecting individuals that may threaten national security and the democratic rule of law. Preliminary screening takes place during the pre-crime phase. However, without clear evidence or concrete indicators of unlawful action or physical violence, it is challenging to determine when someone poses a threat. There are no set patterns that can be used to identify cognitive radicalization processes that will result in violent extremism. Furthermore, prevention targets ideas and ideologies with no clear framework for assessing terrorism-risk. This article examines how civil servants responsible for public order, security and safety deal with their mandate to engage in early detection, and discusses the side effects that accompany this practice. Based on openinterviews with fifteen local security professionals in the Netherlands, we focus here on the risk assessments made by these professionals. To understand their performance, we used the following two research questions: First, what criteria do local security professionals use to determine whether or not someone forms a potential risk? Second, how do local security professionals substantiate their assessments of the radicalization processes that will develop into violent extremism? We conclude that such initial risk weightings rely strongly on ‘gut feelings’ or intuition. We conclude that this subjectivitymayleadto prejudiceand/oradministrativearbitrariness in relationtopreliminary risk assessment of particular youth.
DOCUMENT
The paper introduced an automatic score detection model using object detection techniques. The performance of sevenmodels belonging to two different architectural setups was compared. Models like YOLOv8n, YOLOv8s, YOLOv8m, RetinaNet-50, and RetinaNet-101 are single-shot detectors, while Faster RCNN-50 and Faster RCNN-101 belong to the two-shot detectors category. The dataset was manually captured from the shooting range and expanded by generating more versatile data using Python code. Before the dataset was trained to develop models, it was resized (640x640) and augmented using Roboflow API. The trained models were then assessed on the test dataset, and their performance was compared using matrices like mAP50, mAP50-90, precision, and recall. The results showed that YOLOv8 models can detect multiple objects with good confidence scores.
DOCUMENT
BackgroundA valuable opportunity for reducing the fall incidence in hospitals, is alerting nurses when a patient is about to fall. For such a fall prevention system, more knowledge is needed on what occurs right before a fall. This can be achieved with a stereo camera that automatically detects (and records) dangerous situations.MethodsInpatients with a high risk of falling are selected for inclusion. A fall-risk questionnaire is administered and falls are logged during their stay. A stereo-camera (3D BRAVO-EagleEye system) is mounted in the ceiling and monitors the bed with surroundings. A baseline recording is made to improve the algorithms behind the alert system. When a fall or dangerous situation is detected, monitoring data preceding the incident is stored. Data is analyzed to assess 1) the quality of the system and 2) the prevalence of dangerous situations. Interviews with senior nurses are included in the evaluation.ResultsData collection is ongoing (Currently n=18; falls=1), and currently consists of ±62 hour of baseline recordings and ±24 hour of event-based recordings. These recordings include false positives as well as actual high risk situations.ConclusionsDespite the initial enthusiasm of the participating departments, inclusion of participants is slow, and the number of falls lower than expected. Possible explanations for this have been discussed with the involved senior nurses. With the monitoring data we gained more insight into the occurrence of dangerous situations, but to be able to reliably predict falls, more data on actual fallsshould be recorded.
DOCUMENT
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
DOCUMENT
Objective: This exploratory study investigated to what extent gait characteristics and clinical physical therapy assessments predict falls in chronic stroke survivors. Design: Prospective study. Subjects: Chronic fall-prone and non-fall-prone stroke survivors. Methods: Steady-state gait characteristics were collected from 40 participants while walking on a treadmill with motion capture of spatio-temporal, variability, and stability measures. An accelerometer was used to collect daily-life gait characteristics during 7 days. Six physical and psychological assessments were administered. Fall events were determined using a “fall calendar” and monthly phone calls over a 6-month period. After data reduction through principal component analysis, the predictive capacity of each method was determined by logistic regression. Results: Thirty-eight percent of the participants were classified as fallers. Laboratory-based and daily-life gait characteristics predicted falls acceptably well, with an area under the curve of, 0.73 and 0.72, respectively, while fall predictions from clinical assessments were limited (0.64). Conclusion: Independent of the type of gait assessment, qualitative gait characteristics are better fall predictors than clinical assessments. Clinicians should therefore consider gait analyses as an alternative for identifying fall-prone stroke survivors.
DOCUMENT
In order to achieve a level of community involvement and physical independence, being able to walk is the primary aim of many stroke survivors. It is therefore one of the most important goals during rehabilitation. Falls are common in all stages after stroke. Reported fall rates in the chronic stage after stroke range from 43 to 70% during one year follow up. Moreover, stroke survivors are more likely to become repeated fallers as compared to healthy older adults. Considering the devastating effects of falls in stroke survivors, adequate fall risk assessment is of paramount importance, as it is a first step in targeted fall prevention. As the majority of all falls occur during dynamic activities such as walking, fall risk could be assessed using gait analysis. It is only recent that technology enables us to monitor gait over several consecutive days, thereby allowing us to assess quality of gait in daily life. This thesis studies a variety of gait assessments with respect to their ability to assess fall risk in ambulatory chronic stroke survivors, and explores whether stroke survivors can improve their gait stability through PBT.
DOCUMENT
Aim: The aim of this study is to explore patients' and (in)formal caregivers' perspectives on their role(s) and contributing factors in the course of unplanned hospital readmission of older cardiac patients in the Cardiac Care Bridge (CCB) program. Design: This study is a qualitative multiple case study alongside the CCB randomized trial, based on grounded theory principles. Methods: Five cases within the intervention group, with an unplanned hospital readmission within six months after randomization, were selected. In each case, semi-structured interviews were held with patients (n = 4), informal caregivers (n = 5), physical therapists (n = 4), and community nurses (n = 5) between April and June 2019. Patients' medical records were collected to reconstruct care processes before the readmission. Thematic analysis and the six-step analysis of Strauss & Corbin have been used. Results: Three main themes emerged. Patients experienced acute episodes of physical deterioration before unplanned hospital readmission. The involvement of (in)formal caregivers in adequate observation of patients' health status is vital to prevent rehospitalization (theme 1). Patients and (in)formal caregivers' perception of care needs did not always match, which resulted in hampering care support (theme 2). CCB caregivers experienced difficulties in providing care in some cases, resulting in limited care provision in addition to the existing care services (theme 3). Conclusion: Early detection of deteriorating health status that leads to readmission was often lacking, due to the acuteness of the deterioration. Empowerment of patients and their informal caregivers in the recognition of early signs of deterioration and adequate collaboration between caregivers could support early detection. Patients' care needs and expectations should be prioritized to stimulate participation. Impact: (In)formal caregivers may be able to prevent unplanned hospital readmission of older cardiac patients by ensuring: (1) early detection of health deterioration, (2) empowerment of patient and informal caregivers, and (3) clear understanding of patients' care needs and expectations.
DOCUMENT