Background: For patients with coronary artery disease (CAD), smoking is an important risk factor for the recurrence of a cardiovascular event. Motivational interviewing (MI) may increase the motivation of the smokers to stop smoking. Data on MI for smoking cessation in patients with CAD are limited, and the active ingredients and working mechanisms of MI in smoking cessation are largely unknown. Therefore, this study was designed to explore active ingredients and working mechanisms of MI for smoking cessation in smokers with CAD, shortly after a cardiovascular event.Methods: We conducted a qualitative multiple case study of 24 patients with CAD who participated in a randomized trial on lifestyle change. One hundred and nine audio-recorded MI sessions were coded with a combination of the sequential code for observing process exchanges (SCOPE) and the motivational interviewing skill code (MISC). The analysis of the cases consisted of three phases: single case analysis, cross-case analysis, and cross-case synthesis. In a quantitative sequential analysis, we calculated the transition probabilities between the use of MI techniques by the coaches and the subsequent patient statements concerning smoking cessation.Results: In 12 cases, we observed ingredients that appeared to activate the mechanisms of change. Active ingredients were compositions of behaviors of the coaches (e.g., supporting self-efficacy and supporting autonomy) and patient reactions (e.g., in-depth self-exploration and change talk), interacting over large parts of an MI session. The composition of active ingredients differed among cases, as the patient process and the MI-coaching strategy differed. Particularly, change talk and self-efficacy appeared to stimulate the mechanisms of change “arguing oneself into change” and “increasing self-efficacy/confidence.”Conclusion: Harnessing active ingredients that target the mechanisms of change “increasing self-efficacy” and “arguing oneself into change” is a good MI strategy for smoking cessation, because it addresses the ambivalence of a patient toward his/her ability to quit, while, after the actual cessation, maintaining the feeling of urgency to persist in not smoking in the patient.
MULTIFILE
BackgroundTrials studying Motivational Interviewing (MI) to improve medication adherence in patients with schizophrenia showed mixed results. Moreover, it is unknown which active MI-ingredients are associated with mechanisms of change in patients with schizophrenia. To enhance the effect of MI for patients with schizophrenia, we studied MI's active ingredients and its working mechanisms.MethodsFirst, based on MI literature, we developed a model of potential active ingredients and mechanisms of change of MI in patients with schizophrenia. We used this model in a qualitative multiple case study to analyze the application of the active ingredients and the occurrence of mechanisms of change. We studied the cases of fourteen patients with schizophrenia who participated in a study on the effect of MI on medication adherence. Second, we used the Generalized Sequential Querier (GSEQ 5.1) to perform a sequential analysis of the MI-conversations aiming to assess the transitional probabilities between therapist use of MI-techniques and subsequent patient reactions in terms of change talk and sustain talk.ResultsWe found the therapist factor “a trusting relationship and empathy” important to enable sufficient depth in the conversation to allow for the opportunity of triggering mechanisms of change. The most important conversational techniques we observed that shape the hypothesized active ingredients are reflections and questions addressing medication adherent behavior or intentions, which approximately 70% of the time was followed by “patient change talk”. Surprisingly, sequential MI-consistent therapist behavior like “affirmation” and “emphasizing control” was only about 6% of the time followed by patient change talk. If the active ingredients were embedded in more comprehensive MI-strategies they had more impact on the mechanisms of change.ConclusionsMechanisms of change mostly occurred after an interaction of active ingredients contributed by both therapist and patient. Our model of active ingredients and mechanisms of change enabled us to see “MI at work” in the MI-sessions under study, and this model may help practitioners to shape their MI-strategies to a potentially more effective MI.
MULTIFILE
This toolkit, originating from the research group Psychology for Sustainable Cities, Amsterdam University of Applied Sciences (AUAS), contains materials that help to promote behavioural change in relation to electric shared transport based in onstreet e-Mobility hubs (eHUBs). Behavioural knowledge is an essential ingredient for the successful implementation of eHUBs. Because behaviour is very dependent on the target group’s capabilities and motivation and on the social and physical context in which behaviour takes place, the research group has developed materials that municipalities can use to design a tailor-made eHUBs promotion intervention that suits their own situation. Therefore, practical examples and insights from earlier research are shared with regard to stimulating the use of eHUBs.
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.
MKB-bedrijven op het gebied van architectuur, gebiedsontwikkeling, ontwerp, digital design en technologie-ontwikkeling zien een nieuwe ‘markt’ ontstaan in de toenemende interesse voor de stedelijke commons. Dat zijn lokale gemeenschappen waarin mensen resources zoals energie, mobiliteit of woonruimte met elkaar delen en beheren, op een duurzame en pro-sociale manier. MKB-bedrijven zien kansen om in co-creatie met deze leefgemeenschappen nieuwe diensten en producten te ontwikkelen waarmee bewoners hun hulpbronnen gemeenschappelijk kunnen managen. MKB-bedrijven zien de ontwikkeling van stedelijke commons daarnaast als mogelijke oplossing voor urgente maatschappelijke vraagstukken en missies op het gebied van inclusieve woningbouw, duurzaamheid en de energietransitie. Voor het goed functioneren van de commons is een heldere articulatie en implementatie van hun onderliggende (maatschappelijke) waarden essentieel. Dit vraagt van MKB-bedrijven een zoektocht naar nieuwe manieren van gebieds- en technologie-ontwikkeling in samenwerking met bewoners. Een specifiek probleem daarbij betreft het vertalen van de commons-waarden naar een technologisch systeem dat het gezamenlijk beheer van hulpbronnen mogelijk maakt. Hiervoor wordt veel verwacht van digitale platformen en distributed ledgers technologies zoals de blockchain. Dit zijn databases die precies bijhouden wie wat bijdraagt en gebruikt. Ze koppelen zo’n boekhouding ook aan rechten, plichten en reputaties van de deelnemers. Bij de inrichting van zo’n systeem moeten ontwerpers steeds keuzes maken en rekening houden met spanningen tussen bijvoorbeeld privacy en transparantie, of individuele en collectieve belangen. In dit ontwerpproces stuiten MKBs op een kennishiaat. Hoe kunnen de onderliggende (maatschappelijke) waarden van commons-gemeenschappen 1) worden gearticuleerd en 2) vertaald naar een ontwerp voor de organisatie van een stedelijke commons met behulp van digitale platformen? Dit onderzoek verkent deze vragen in een fieldlab in Amersfoort, op twee ‘transfersites’ in Amsterdam en Birmingham, en met community of practice partners. Samen met hen worden een set design-principes en richtlijnen ontwikkeld voor het ontwerp van DLTs voor de stedelijke commons.
Globally, we face the urgent task of the transition to a climate neutral and circular society. Biobased materials are regenerative and add considerably less to the carbon stock in the atmosphere. Therefore they get high priority in several missions of the KIA theme “Energy transition and Sustainability”. In recent years significant progress has been made in biobased materials technology. In the “Circular Biobased Delta” region the Universities of Applied Sciences have grown into strong research partners in this field. However, successful business cases are few and society reacts only hesitantly. Accelerating the transition to biobased materials asks for a strategic move to a truly interdisciplinary collaboration. In response, in the Living Ecosystem programme, technological, economic and societal researchers from the three Universities of Applied Sciences (HZ, RUAS, Avans) join to form a core group. Together they will align and extend their research in shared topics such as biobased ingredients, circular building, and bioplastics. Around these topics, cross-sectoral communities within the existing regional ecosystem will be organised, connected and called upon to articulate interdisciplinary research projects and valorise the outcomes. The partners have different levels of achievement together forming a strong research group. They will share their experiences to collectively improve the volume, impact and quality of their research. In doing so they aim to become leaders within their separate disciplines and collectively evolve into an (inter)nationally recognised top-rank research community. The core group of researchers is assisted by a strong consortium, whose members represent the different topics and functions in the ecosystem. The consortium will advise the core group in defining and valorising their research. The regional ecosystem already hosts many “field labs”. The programme aims to create focus in their utilisation for an impactful programme of development, education and communication activities.