Sensor technology is increasingly applied for the purpose of monitoring elderly’s Activities of Daily Living (ADL), a set of activities used by physicians to benchmark physical and cognitive decline. Visualizing deviations in ADL can help medical specialists and nurses to recognize disease symptoms at an early stage. This paper presents possible visualizations for identifying such deviations. These visualizations have been iteratively explored and developed with three different medical specialists to better understand which deviations are relevant according to the different medical specialisms and explore how these deviations should be best presented. The study results suggest that the participants found a monthly bar graph in which activities are represented by colours as the most suitable from the ones presented. Although the visualizations of every ADL was found to be more or less relevant by the different medical specialists, the preference for focusing on specific ADL’s varied from specialist to specialist.
DOCUMENT
Ambient monitoring systems offer great possibilities for health trend analysis in addition to anomaly detection. Health trend analysis helps care professionals to evaluate someones functional health and direct or evaluate the choice of interventions. This paper presents one case study of a person that was followed with an ambient monitoring system for almost three years and another of a person that was followed for over a year. A simple algorithm is applied to make a location based data representation. This data is visualized for care professionals, and used for inspecting the regularity of the pattern with means of principal component analysis (PCA). This paper provides a set of tools for analyzing longitudinal behavioral data for health assessments. We advocate a standardized data collection procedure, particularly the health metrics that could be used to validate health focused sensor data analyses.
DOCUMENT
Purpose (1) To investigate the differences in the course of participation up to one year after stroke between distinct movement behavior patterns identified directly after discharge to the home setting, and (2) to investigate the longitudinal association between the development of movement behavior patterns over time and participation after stroke. Materials and methods 200 individuals with a first-ever stroke were assessed directly after discharge to the home setting, at six months and at one year. The Participation domain of the Stroke Impact Scale 3.0 was used to measure participation. Movement behavior was objectified using accelerometry for 14 days. Participants were categorized into three distinct movement behavior patterns: sedentary exercisers, sedentary movers and sedentary prolongers. Generalized estimating equations (GEE) were performed. Results People who were classified as sedentary prolongers directly after discharge was associated with a worse course of participation up to one year after stroke. The development of sedentary prolongers over time was also associated with worse participation compared to sedentary exercisers. Conclusions The course of participation after stroke differs across distinct movement behavior patterns after discharge to the home setting. Highly sedentary and inactive people with stroke are at risk for restrictions in participation over time. Implications for rehabilitation The course of participation in people with a first-ever stroke up to one year after discharge to the home setting differed based on three distinct movement behavior patterns, i.e., sedentary exercisers, sedentary movers and sedentary prolongers. Early identification of highly sedentary and inactive people with stroke after discharge to the home setting is important, as sedentary prolongers are at risk for restrictions in participation over time. Supporting people with stroke to adapt and maintain a healthy movement behavior after discharge to the home setting could prevent potential long-term restrictions in participation.
MULTIFILE
Movement behaviors, that is, both physical activity and sedentary behavior, are independently associated with health risks. Although both behaviors have been investigated separately in people after stroke, little is known about the combined movement behavior patterns, differences in these patterns between individuals, or the factors associated with these patterns. Therefore, the objectives of this study are (1) to identify movement behavior patterns in people with first-ever stroke discharged to the home setting and (2) to explore factors associated with the identified patterns.
DOCUMENT
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE
At the department of electrical and electronic engineering of Fontys University of Applied Sciences we are defining a real-life learning context for our students, where the crossover with regional healthcare companies and institutes is maximized. Our innovative educational step is based on openly sharing electronic designs for health related measurement modalities as developed by our students. Because we develop relevant reference designs, the cross fertilization with society is large and so the learning cycle is short.
DOCUMENT
Maintaining mental health can be quite challenging, especially when exposed to stressful situations. In many cases, mental health problems are recognized too late to effectively intervene and prevent adverse outcomes. Recent advances in the availability and reliability of wearable technologies offer opportunities for continuously monitoring mental states, which may be used to improve a person’s mental health. Previous studies attempting to detect and predict mental states with different modalities have shown only small to moderate effect sizes. This limited success may be due to the large variability between individuals regarding e.g., ways of coping with stress or behavioral patterns associated with positive or negative feelings. A study was set up for the detection of mental states based on longitudinal wearable and contextual sensing, targeted at investigating between-subjects variations in terms of predictors of mental states and variations in how predictors relate to mental states. At the end of March 2022, 16 PhD candidates from the Netherlands started to participate in the study. Over nine months, we collected data in terms of their daily mental states (valence and arousal), continuous physiological data (Oura ring) and smartphone data (AWARE framework including GPS and smartphone usage). From the raw data, we aggregated daily values for each participant in terms of sleep, physical activity, mental states, phone usage and GPS movement. First results (six months into the study at the time of writing) indicate that almost all participants show a large variability in ratings of daily mental states, which is a prerequisite for predictive modeling. Direction, strength and standard deviations of Spearman correlations between valence, arousal and the different variables suggest that several predictors of valence and arousal are more subject dependent than others. In future analyses, we will test and compare different versions of predictive modeling to highlight the potential of wearable technologies for mental state monitoring and the personalized prediction of the development of mental problems.
DOCUMENT
Design educators and industry partners are critical knowledge managers and co-drivers of change, and design graduate and post-graduate students can act as catalysts for new ideas, energy, and perspectives. In this article, we will explore how design advances industry development through the lens of a longitudinal inquiry into activities carried out as part of a Dutch design faculty-industry collaboration. We analyze seventy-five (75) Master of Science (MSc) thesis outcomes and seven (7) Doctorate (PhD) thesis outcomes (five in progress) to identify ways that design activities have influenced advances in the Dutch aviation industry over time. Based on these findings, we then introduce an Industry Design Framework, which organizes the industry/design relationship as a three-layered system. This novel approach to engaging industry in design research and design education has immediate practical value and theoretical significance, both in the present and for future research. https://doi.org/10.1016/j.sheji.2019.07.003 LinkedIn: https://www.linkedin.com/in/christine-de-lille-8039372/
MULTIFILE
In sports, inertial measurement units are often used to measure the orientation of human body segments. A Madgwick (MW) filter can be used to obtain accurate inertial measurement unit (IMU) orientation estimates. This filter combines two different orientation estimates by applying a correction of the (1) gyroscope-based estimate in the direction of the (2) earth frame-based estimate. However, in sports situations that are characterized by relatively large linear accelerations and/or close magnetic sources, such as wheelchair sports, obtaining accurate IMU orientation estimates is challenging. In these situations, applying the MW filter in the regular way, i.e., with the same magnitude of correction at all time frames, may lead to estimation errors. Therefore, in this study, the MW filter was extended with machine learning to distinguish instances in which a small correction magnitude is beneficial from instances in which a large correction magnitude is beneficial, to eventually arrive at accurate body segment orientations in IMU-challenging sports situations. A machine learning algorithm was trained to make this distinction based on raw IMU data. Experiments on wheelchair sports were performed to assess the validity of the extended MW filter, and to compare the extended MW filter with the original MW filter based on comparisons with a motion capture-based reference system. Results indicate that the extended MW filter performs better than the original MW filter in assessing instantaneous trunk inclination (7.6 vs. 11.7◦ root-mean-squared error, RMSE), especially during the dynamic, IMU-challenging situations with moving athlete and wheelchair. Improvements of up to 45% RMSE were obtained for the extended MW filter compared with the original MW filter. To conclude, the machine learning-based extended MW filter has an acceptable accuracy and performs better than the original MW filter for the assessment of body segment orientation in IMU-challenging sports situations.
DOCUMENT
Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift.
LINK