AimsGenetic hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere protein-encoding genes (i.e. genotype-positive HCM). In an increasing number of patients, HCM occurs in the absence of a mutation (i.e. genotype-negative HCM). Mitochondrial dysfunction is thought to be a key driver of pathological remodelling in HCM. Reports of mitochondrial respiratory function and specific disease-modifying treatment options in patients with HCM are scarce.Methods and resultsRespirometry was performed on septal myectomy tissue from patients with HCM (n = 59) to evaluate oxidative phosphorylation and fatty acid oxidation. Mitochondrial dysfunction was most notably reflected by impaired NADH-linked respiration. In genotype-negative patients, but not genotype-positive patients, NADH-linked respiration was markedly depressed in patients with an indexed septal thickness ≥10 compared with <10. Mitochondrial dysfunction was not explained by reduced abundance or fragmentation of mitochondria, as evaluated by transmission electron microscopy. Rather, improper organization of mitochondria relative to myofibrils (expressed as a percentage of disorganized mitochondria) was strongly associated with mitochondrial dysfunction. Pre-incubation with the cardiolipin-stabilizing drug elamipretide and raising mitochondrial NAD+ levels both boosted NADH-linked respiration.ConclusionMitochondrial dysfunction is explained by cardiomyocyte architecture disruption and is linked to septal hypertrophy in genotype-negative HCM. Despite severe myocardial remodelling mitochondria were responsive to treatments aimed at restoring respiratory function, eliciting the mitochondria as a drug target to prevent and ameliorate cardiac disease in HCM. Mitochondria-targeting therapy may particularly benefit genotype-negative patients with HCM, given the tight link between mitochondrial impairment and septal thickening in this subpopulation.
DOCUMENT
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) (ie, progressive exercise provocation in association with serial electrocardiograms [ECG], hemodynamics, oxygen saturation, and subjective symptoms) and measurement of ventilatory gas exchange amounts to a superior method to: 1) accurately quantify cardiorespiratory fitness (CRF), 2) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiologic mechanism(s) and/or performance differences, and 3) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown etiology where the data gained from this form of ET is highly valuable in terms of clinical decision making
DOCUMENT
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) [i.e. progressive exercise provocation in association with serial electrocardiograms (ECGs), haemodynamics, oxygen saturation, and subjective symptoms] and measurement of ventilatory gas exchange amounts to a superior method to: (i) accurately quantify cardiorespiratory fitness (CRF), (ii) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiological mechanism(s) and/or performance differences, and (iii) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown aetiology where the data gained from this form of ET is highly valuable in terms of clinical decision making.1
DOCUMENT
Lichamelijke zwakte is een belangrijk onderdeel van kwetsbaarheid en komt veel voor bij oudere volwassenen. Terwijl vrouwen een hogere prevalentie en een eerder begin van kwetsbaarheid kennen zijn sekseverschillen in de ontwikkeling van lichamelijke zwakte nauwelijks bestudeerd. Daarom hebben we in spieren de veranderingen onderzocht die onderscheid maken tussen fitte en zwakke ouderen voor elk geslacht afzonderlijk. Mannen (n = 28) en vrouwen (n = 26) van 75 jaar en ouder werden gegroepeerd op basis van hun fysieke prestatiecriteria. Er werd gebruik gemaakt van spierbiopten genomen uit de vastus lateralis-spier voor genexpressie- en histologisch onderzoek. Er werden paarsgewijze vergelijkingen gemaakt tussen de sterkste en de zwakste groepen voor elk geslacht afzonderlijk, en potentiële geslachts-specifieke effecten werden beoordeeld. Zwakke vrouwen toonden een hogere expressie van ontstekingsroutes, infiltratie van NOX2-immuuncellen, samen met een hogere VCAM1-expressie. Zwakke mannen werden gekenmerkt door een kleinere diameter van type 2 (snelle) spiervezels en lagere expressie van PRKN. Zwakte-geassocieerde genexpressie-veranderingen in de spieren waren verschillend van veroudering-geassocieerde genexpressie-veranderingen, wat erop wijst dat de pathofysiologie van fysieke zwakte niet noodzakelijkerwijs afhankelijk is van veroudering. We concluderen dat zwakte-geassocieerde veranderingen in de spieren sekse-specifiek zijn. Aanbevolen wordt om bij onderzoek naar kwetsbaarheid rekening te houden met sekseverschillen, omdat deze verschillen een grote impact kunnen hebben over de ontwikkeling van (farmaceutische) interventies tegen kwetsbaarheid.
MULTIFILE
Talloze studies tonen aan dat een fysiek actieve leefstijl bloeddruk, cholesterol en gewicht verlaagt, botten en spieren versterkt en het risico van hart- en vaatziekten, darmkanker en diabetes type II vermindert. Bewegen kan dus worden gezien als een medicijn wat voor iedereen toegankelijk is.
DOCUMENT
Study goal: This study was carried out to answer the following research question: which motivation do healthy volunteers have to participate in phase I clinical trials? - Methods: A literature search was done through Google Scholar and Academic Search Premier, followed by three interviews with volunteers who had recently concluded their participation in a (non-commercial) phase I trial. - Results: Our literature search revealed mainly commercial motives for volunteers to participate in phase I clinical trials. The interviews (with volunteers in a non-commercial trial) showed that other factors may also play a decisive role, such as: (1) wish to support the investigator (2) wish to contribute to science, (3) access to more/better health care (4) sociability: possibility to relax and to communicate with other participants (5) general curiosity. Precondition is that risks and burden are deemed acceptable. - Conclusions: financial remuneration appears to be the predominant motive to participate voluntarily in a clinical trial. Other reasons were also mentioned however, such as general curiosity, the drive to contribute to science and the willingness to help the investigator. In addition, social reasons were given such as possibility to relax and to meet other people. Potential subjects state that they adequately assess the (safety) risks of participating in a trial as part of their decision process.
DOCUMENT
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
Abstract Background Clients with severe mental illness (SMI) have overall poor physical health. SMI reduces life expectancy by 5–17 years, primarily due to physical comorbidity linked to cardiometabolic risks that are mainly driven by unhealthy lifestyle behaviours. To improve physical health in clients with SMI, key elements are systematic somatic screening and lifestyle promotion. The nurse-led GILL eHealth was developed for somatic screening and the imple‑ mentation of lifestyle activities in clients with SMI. Aims of this study are to evaluate the efectiveness of the GILL eHealth intervention in clients with SMI compared to usual care, and to evaluate the implementation process, and the experiences of clients and healthcare providers with GILL eHealth. Methods The GILL study encompasses a cluster-randomised controlled trial in approximately 20 mental health care facilities in the Netherlands. The randomisation takes place at the team level, assigning clients to the eHealth inter‑ vention or the usual care group. The GILL eHealth intervention consists of two complementary modules for somatic screening and lifestyle promotion, resulting in personalised somatic treatment and lifestyle plans. Trained mental health nurses and nurse practitioners will implement the intervention within the multidisciplinary treatment context, and will guide and support the participants in promoting their physical health, including cardiometabolic risk management. Usual care includes treatment as currently delivered, with national guidelines as frame of reference. We aim to include 258 clients with SMI and a BMI of 27 or higher. Primary outcome is the metabolic syndrome severity score. Secondary outcomes are physical health measurements and participants’ reports on physical activity, perceived lifestyle behaviours, quality of life, recovery, psychosocial functioning, and health-related self-efcacy. Measurements will be completed at baseline and at 6 and 12 months. A qualitative process evaluation will be conducted alongside, to evaluate the process of implementation and the experiences of clients and healthcare professionals with GILL eHealth. Discussion The GILL eHealth intervention is expected to be more efective than usual care in improving physical health and lifestyle behaviours among clients with SMI. It will also provide important information on implementation of GILL eHealth in mental health care. If proven efective, GILL eHealth ofers a clinically useful tool to improve physical health and lifestyle behaviours.
DOCUMENT
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
MULTIFILE