Current symptom detection methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not standardised and not consistent with HVAC process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to a very limited application of energy performance diagnosis systems in practice. This paper proposes detection methods to overcome these issues, based on the 4S3F (four types of symptom and three types of faults) framework. A set of generic symptoms divided into three categories (balance, energy performance and operational state symptoms) is discussed and related performance indicators are developed, using efficiencies, seasonal performance factors, capacities, and control and design-based operational indicators. The symptom detection method was applied successfully to the HVAC system of the building of The Hague University of Applied Sciences. Detection results on an annual, monthly and daily basis are discussed and compared. Link to the formail publication via its DOI https://doi.org/10.1016/j.autcon.2020.103344
DOCUMENT
In recent years, drones have increasingly supported First Responders (FRs) in monitoring incidents and providing additional information. However, analysing drone footage is time-intensive and cognitively demanding. In this research, we investigate the use of AI models for the detection of humans in drone footage to aid FRs in tasks such as locating victims. Detecting small-scale objects, particularly humans from high altitudes, poses a challenge for AI systems. We present first steps of introducing and evaluating a series of YOLOv8 Convolutional Neural Networks (CNNs) for human detection from drone images. The models are fine-tuned on a created drone image dataset of the Dutch Fire Services and were able to achieve a 53.1% F1-Score, identifying 439 out of 825 humans in the test dataset. These preliminary findings, validated by an incident commander, highlight the promising utility of these models. Ongoing efforts aim to further refine the models and explore additional technologies.
MULTIFILE
Frontline professionals such as social workers and civil servants play a crucial role in countering violent extremism.Because of their direct contac twith society,first liners are tasked with detecting individuals that may threaten national security and the democratic rule of law. Preliminary screening takes place during the pre-crime phase. However, without clear evidence or concrete indicators of unlawful action or physical violence, it is challenging to determine when someone poses a threat. There are no set patterns that can be used to identify cognitive radicalization processes that will result in violent extremism. Furthermore, prevention targets ideas and ideologies with no clear framework for assessing terrorism-risk. This article examines how civil servants responsible for public order, security and safety deal with their mandate to engage in early detection, and discusses the side effects that accompany this practice. Based on openinterviews with fifteen local security professionals in the Netherlands, we focus here on the risk assessments made by these professionals. To understand their performance, we used the following two research questions: First, what criteria do local security professionals use to determine whether or not someone forms a potential risk? Second, how do local security professionals substantiate their assessments of the radicalization processes that will develop into violent extremism? We conclude that such initial risk weightings rely strongly on ‘gut feelings’ or intuition. We conclude that this subjectivitymayleadto prejudiceand/oradministrativearbitrariness in relationtopreliminary risk assessment of particular youth.
DOCUMENT
Within Human Activity Recognition (HAR), there is an insurmountable gap between the range of activities performed in life and those that can be captured in an annotated sensor dataset used in training. Failure to properly handle unseen activities seriously undermines any HAR classifier's reliability. Additionally within HAR, not all classes are equally dissimilar, some significantly overlap or encompass other sub-activities. Based on these observations, we arrange activity classes into a structured hierarchy. From there, we propose Hi-OSCAR: a Hierarchical Open-set Classifier for Activity Recognition, that can identify known activities at state-of-the-art accuracy while simultaneously rejecting unknown activities. This not only enables open-set classification, but also allows for unknown classes to be localized to the nearest internal node, providing insight beyond a binary “known/unknown” classification. To facilitate this and future open-set HAR research, we collected a new dataset: NFI_FARED. NFI_FARED contains data from multiple subjects performing nineteen activities from a range of contexts, including daily living, commuting, and rapid movements, which is fully public and available for download.
MULTIFILE
The paper introduced an automatic score detection model using object detection techniques. The performance of sevenmodels belonging to two different architectural setups was compared. Models like YOLOv8n, YOLOv8s, YOLOv8m, RetinaNet-50, and RetinaNet-101 are single-shot detectors, while Faster RCNN-50 and Faster RCNN-101 belong to the two-shot detectors category. The dataset was manually captured from the shooting range and expanded by generating more versatile data using Python code. Before the dataset was trained to develop models, it was resized (640x640) and augmented using Roboflow API. The trained models were then assessed on the test dataset, and their performance was compared using matrices like mAP50, mAP50-90, precision, and recall. The results showed that YOLOv8 models can detect multiple objects with good confidence scores.
DOCUMENT
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
DOCUMENT
From the article: "A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes (nanogap IDEs) with gaps from 50–250 nm have been designed and processed at full wafer-scale. These nanogap IDEs were then coated with poly(4-vinyl phenol) as a sensitive layer to form gas sensors for acetone detection at low concentrations. These acetone sensors showed excellent sensing performance with a dynamic range from 1000 ppm to 10 ppm of acetone at room temperature and the observed results are compared with conventional interdigitated microelectrodes according to our previous work. Sensitivity and reproducibility of devices are discussed in detail. Our approach of fabrication of nanogap IDEs together with a simple coating method to apply the sensing layer opens up possibilities to create various nanogap devices in a cost-effective manner for gas sensing applications"
MULTIFILE
Aims and objectives. The Forensic Early Warning Signs of Aggression Inventory (FESAI) was developed to assist nurses and patients in identifying early warning signs and constructing individual early detection plans (EDP) for the prevention of aggressive incidents. The aims of this research were as follows: First, to study the prevalence of early warning signs of aggression, measured with the FESAI, in a sample of forensic patients, and second, to explore whether there are any types of warning signs typical of diagnostic subgroups or offender subgroups. Background. Reconstructing patients’ changes in behaviour prior to aggressive incidents may contribute to identify early warning signs specific to the individual patient. The EDP comprises an early intervention strategy suggested by the patient and approved by the nurses. Implementation of EDP may enhance efficient risk assessment and management. Design. An explorative design was used to review existing records and to monitor frequencies of early warning signs. Methods. Early detection plans of 171 patients from two forensic hospital wards were examined. Frequency distributions were estimated by recording the early warning signs on the FESAI. Rank order correlation analyses were conducted to compare diagnostic subgroups and offender subgroups concerning types and frequencies of warning signs. Results. The FESAI categories with the highest frequency rank were the following: (1) anger, (2) social withdrawal, (3) superficial contact and (4) non-aggressive antisocial behaviour. There were no significant differences between subgroups of patients concerning the ranks of the four categories of early warning signs. Conclusion. The results suggest that the FESAI covers very well the wide variety of occurred warning signs reported in the EDPs. No group profiles of warning signs were found to be specific to diagnosis or offence type. Relevance to clinical practice. Applying the FESAI to develop individual EDPs appears to be a promising approach to enhance risk assessment and management.
DOCUMENT
One major drawback of deception detection is its vulnerability to countermeasures, whereby participants wilfully modulate their physiological or neurophysiological response to critical guilt-determining stimuli. One reason for this vulnerability is that stimuli are usually presented slowly. This allows enough time to consciously apply countermeasures, once the role of stimuli is determined. However, by increasing presentation speed, stimuli can be placed on the fringe of awareness, rendering it hard to perceive those that have not been previously identified, hindering the possibility to employ countermeasures. We tested an identity deception detector by presenting first names in Rapid Serial Visual Presentation and instructing participants to lie about their own identity. We also instructed participants to apply a series of countermeasures. The method proved resilient, remaining effective at detecting deception under all countermeasures.
MULTIFILE
Aim: The aim of this study is to explore patients' and (in)formal caregivers' perspectives on their role(s) and contributing factors in the course of unplanned hospital readmission of older cardiac patients in the Cardiac Care Bridge (CCB) program. Design: This study is a qualitative multiple case study alongside the CCB randomized trial, based on grounded theory principles. Methods: Five cases within the intervention group, with an unplanned hospital readmission within six months after randomization, were selected. In each case, semi-structured interviews were held with patients (n = 4), informal caregivers (n = 5), physical therapists (n = 4), and community nurses (n = 5) between April and June 2019. Patients' medical records were collected to reconstruct care processes before the readmission. Thematic analysis and the six-step analysis of Strauss & Corbin have been used. Results: Three main themes emerged. Patients experienced acute episodes of physical deterioration before unplanned hospital readmission. The involvement of (in)formal caregivers in adequate observation of patients' health status is vital to prevent rehospitalization (theme 1). Patients and (in)formal caregivers' perception of care needs did not always match, which resulted in hampering care support (theme 2). CCB caregivers experienced difficulties in providing care in some cases, resulting in limited care provision in addition to the existing care services (theme 3). Conclusion: Early detection of deteriorating health status that leads to readmission was often lacking, due to the acuteness of the deterioration. Empowerment of patients and their informal caregivers in the recognition of early signs of deterioration and adequate collaboration between caregivers could support early detection. Patients' care needs and expectations should be prioritized to stimulate participation. Impact: (In)formal caregivers may be able to prevent unplanned hospital readmission of older cardiac patients by ensuring: (1) early detection of health deterioration, (2) empowerment of patient and informal caregivers, and (3) clear understanding of patients' care needs and expectations.
DOCUMENT