Biopolymeren vormen een potentieel interessant alternatief voor conventioneel op olie gebaseerde polymeren, omdat zij geen fossiele grondstoffen gebruiken voor de productie. Daarentegen is het productie procedé afhankelijk van energie en toevoegmiddelen die weer bijdragen aan het verbruik van energie en de emissie van onder andere broeikasgassen en zijn degrondstoffen van belang, zoals het gebruik van reststromen uit de afvalverwerking of andere biomaterialen. Binnen het project Circulaire Biopolymeren Waardeketens zijn meerdere productiemethoden bestudeerd om polyhydroxyalkanoaten (PHAs) te maken uit organische reststromen: GFT en afvalwaterslib, een bijproduct uit de afvalwaterzuivering. Productie enextractie van PHAs kan middels diverse routes. In het project zijn meerdere extractieroutes bestudeerd betreffende hun mogelijkheden. Als onderdeel van het project is een levenscyclusanalyse (LCA) gedaan om de milieu-impact van de productie van de biopolymeren in kaart te brengen. Deze is hier beschreven. De milieu-impact van PHA productie via twee extractieroutes werd vergeleken met conventionele polymeren zoals polyethyleen (PE) en polyethyleentereftalaat (PET). De extractieroutes waren: NaOCl, water-based en Chloroform, solvent-based extractie. De milieu-impact werd berekend op basis van de productie van 1 kgpolymeer. Het systeem includeerde de veranderingen in het conventionele management van GFT en afvalwaterslib, o.a. substitutie van energie doordat de reststromen nu gebruikt werden voor PHA productie en niet voor energieproductie. Op basis van een modelstudie van de UniversiteitGroningen is een massabalans opgemaakt en zijn gegevens gebruikt voor energieverbruik te bepalen en de hoeveelheid toevoegmiddelen die nodig waren tijdens de extractie. Op basis van literatuur zijn aannames gedaan zoals calorische waarden voor verbranding en het energieverbruik voor ontwateren, drogen en vergisting. De Ecoinvent database werd gebruikt voor achtergrond gegevens ten behoeve van de energieproductie en achtergrondprocessen. De volgende milieu-impacts werden berekend: broeikasgassen, verzuring, eutrofiëring, landgebruik, fijnstofemissie en fossiel energieverbruik. Een gevoeligheidsanalyse gaf inzicht in de verandering van parameters op het eindresultaat. De resultaten lieten zien dat watergebaseerde extractie leidde tot emissie van 5,95 kg CO2-eq per kg PHA en chloroformextractie tot 47 kg CO2-eq per kg PHA. Verschillen zaten met name in het energieverbruik tijdens het proces en de productie van de toevoegmiddelen. Verzuring was lager voor chloroformextractie met -0,015 kg SO2-eq ten opzichte van watergebaseerde extractie, namelijk 0,013 kg SO2-eq per kg PHA. Energieverbruik was 90,7 MJ voor watergebaseerde extractie en 772 MJ per kg PHA voor chloroformextractie. Landgebruik was lager voor chloroformextractie met -4,7 m2 per kg PHA en 0,43 m2 per kg PHA voor watergebaseerde extractie. Eveneens was fijnstofemissie lager voor chlorformextractie en marine eutrofiëring lager for watergebaseerde extractie. Chloroformextractie had hogere impact in broeikasgassen, energieverbruik en eutrofiëring vergeleken met PET en PE. Watergebaseerde extractie had hogere impact in broeikasgassen, energieverbruik, fijnstofemissie en eutrofiëring, maar werd vergelijkbaar of lager ten opzichte van conventionele polymeren wanneer een lager energieverbruik werd aangenomen. Onderzoek naar het exacte energieverbruik is daarom nodig. Geconcludeerd werd dat verdere verlaging van de milieu-impact kan worden bereikt door het verminderen van het gebruik van toevoegmiddelen en het gebruiken van groene energie zoals wind en zon. Voor vervolgonderzoek is het van belang om data te verifiëren en eventueel andere extractieroutes te onderzoeken
DOCUMENT
Accumulation of non-degradable plastic waste in the environment might be prevented by the use of biodegradable polyhydroxyalkanoate (PHA). In this study, the thermophile Schlegelella thermodepolymerans produced up to 80 wt% PHA based on dry cell mass. The largest PHA granules were found in the cells within 48 h using 20 g/L xylose, a C/N ratio of 100, an initial pH of 7, at 50 °C. The substrate consumption, pH changes, and cell growth were monitored, revealing the time dependency of PHA production in S. thermodepolymerans. The metabolic pathways from xylose to PHA were identified based on proteomic analysis, revealing involvement of classic phaCAB, de novo fatty acid biosynthesis, and fatty acid β-oxidation. In addition, it was shown that S. thermodepolymerans degraded extracellular PHA with a high efficiency at 50 °C.
DOCUMENT
Biopolymeren vormen een potentieel interessant alternatief voor conventioneel op olie gebaseerde polymeren, omdat zij geen fossiele grondstoffen gebruiken voor de productie. Daarentegen is het productie procedé afhankelijk van energie en toevoegmiddelen die weer bijdragen aan het verbruik van energie en de emissie van onder andere broeikasgassen en zijn de grondstoffen van belang, zoals het gebruik van reststromen uit de afvalverwerking of andere biomaterialen. Binnen het project Circulaire Biopolymeren Waardeketens zijn meerdere productiemethoden bestudeerd om polyhydroxyalkanoaten (PHAs) te maken uit organische reststromen: GFT en afvalwaterslib, een bijproduct uit de afvalwaterzuivering. Productie en extractie van PHAs kan middels diverse routes. In het project zijn meerdere extractieroutes bestudeerd betreffende hun mogelijkheden. Als onderdeel van het project is een levenscyclusanalyse (LCA) gedaan om de milieu-impact van de productie van de biopolymeren in kaart te brengen.
MULTIFILE
Aanleiding: De belangstelling voor gezonde en veilige voeding is groot. Bij de gezondheidseffecten van voeding spelen de darmen een cruciale rol. Verschillende soorten bedrijven hebben behoefte aan natuurgetrouwe testmodellen om de effecten van voeding op de darmen te bestuderen. Ze zijn vooral op zoek naar modellen waarvan de uitkomsten direct vertaalbaar zijn naar het doelorganisme (de mens of bijvoorbeeld het varken) en die niet gebruikmaken van kostbare en maatschappelijke beladen dierproeven. Doelstelling Het project 2-REAL-GUTS heeft als doel om twee innovatieve dierproefvrije darmmodellen geschikt te maken voor onderzoek naar voedingsconcepten en -ingrediënten. De twee darmmodellen die worden toegepast zijn darmorganoïden, minidarmorgaantjes bestaande uit stamcellen, en darmexplants bestaande uit hele stukjes darm verkregen uit relevante organismen. Beide modellen hebben potentieel heel uitgebreide toepassingsmogelijkheden en hebben ook grote voordelen ten opzichte van de huidige veelgebruikte cellijnen, omdat ze meerdere in de darm aanwezige celtypen bevatten en uit verschillende specifieke darmregio's te verkrijgen zijn. Gezamenlijk gaan de partners werken aan: 1) het aanpassen van de kweekomstandigheden zodat darmmodellen geschikt worden om de vragen van partners te beantwoorden; 2) het vaststellen van de toepassingsmogelijkheden van de darmmodellen door verschillende stoffen en producten te testen. Beoogde resultaten Kennisconferenties, publicaties en exploitatie van de modellen zullen zorgen voor het verspreiden van de opgedane kennis. Omdat het project gebruikmaakt van moderne, op de toekomst gerichte laboratoriumtechnieken (kweekmethoden met stamcellen en vitaal weefsel, moleculaire analyses en microscopie), leent het zich uitstekend om geïmplementeerd te worden in het hbo-onderwijs. Als spin-off zal het project dan ook voorzien in een specifieke, voor Nederland unieke hbo-minor op het gebied van stamcel- en aanverwante technologie (zoals organ-on-a-chiptechnologie).
Op weg naar een circulaire maatschappij ligt een grote uitdaging bij de ontwikkeling van producten die om bijvoorbeeld medische reden slechts eenmalig gebruikt kunnen worden zoals beschermende handschoenen. Enerzijds is kwaliteit en comfort belangrijk, anderzijds moeten kosten beperkt zijn. Twee ziekenhuizen, Erasmus MC (Rotterdam) en Reinier de Graaf (Delft) hebben Biotec benaderd om een nieuw, duurzaam materiaal te ontwikkelen voor de medische wegwerphandschoen, één van de meest gebruikte disposables in ziekenhuizen. Momenteel worden deze handschoenen meestal gemaakt van een synthetisch gecarboxyleerd nitril-butadiene rubber. Het ontwikkelen van compleet biogebaseerde, hoogwaardige en goedkope medische wegwerphandschoenen is een zeer tijd- en kapitaal intensief proces. Een eerste stap naar een duurzamer en betaalbaar alternatief is het gebruik van een biogebaseerd vulmiddel. In dit technologisch haalbaarheidsonderzoek zal nagegaan worden wat het effect is van het toevoegen van goedkope biogebaseerde vulmiddelen op de stabiliteit van de voor handschoenen gebruikte latex, de verwerkbaarheid tot een rubber (curing) en de eigenschappen van de verkregen rubber. Tevens zal een eerste kostencalculatie en duurzaamheid assessment worden uitgevoerd op basis van de verkregen technologische resultaten. Zuyd heeft veel kennis opgebouwd op het gebied van (biogebaseerde) materiaalontwikkeling en heeft een groot netwerk van materiaalproducenten om vervolgtrajecten samen mee op te zetten. Biotec heeft veel kennis van de zorgmarkt. Op basis van resultaten van dit project zal samen een verdere ontwikkelstrategie worden bepaald.
AanleidingCoatings zoals verven worden toegepast voor de bescherming van materialen tegen schade, corrosie, slijtage en weersinvloeden. De Europese Unie transitieambitie (van een lineaire naar een circulaire economie) vraagt ook om verdere verduurzaming en vergroening van de coatingsector. Meer dan 75% van de totale CO2-emissie van de verfsector is gerelateerd aan het gebruik van huidig gebruikte fossiele grondstoffen. Deze grondstoffen zijn verantwoordelijk voor de negatieve milieu-impact (LCA en CF-analyses) en gebrek aan circulariteit. Ook geldt dat verfgrondstoffen een bron van persistente microplastics zijn, waarvan de nadelige gevolgen steeds meer duidelijk worden. Binnen de verfsector valt daarom een significante milieuwinst te behalen door de vervanging van de huidige fossiele grondstoffen door toekomstbestendige varianten. De gewenste transitie wordt momenteel beperkt door het gelimiteerde aanbod van duurzame, hernieuwbare en milieu ontlastende grondstoffen.Doel van het projectDit MOOI-consortium heeft tot doel om versnelling te brengen in het beschikbaar maken van biodegradeerbare, biobased en circulaire verfcoatings opdat de CO2-uitstoot en de milieubelasting gereduceerd wordt met 25% respectievelijk 75% t.o.v. huidige acrylaat gedragen verfsystemen. Het punt op de horizon van dit consortium is: verven die volledig biodegradeerbaar zijn, en waarbij het aandeel microplastics met 100% is gereduceerd en 50% van de grondstoffen wordt geproduceerd uit circulaire of biogene bronnen. Dit ambitieniveau strekt veel verder dan lopend onderzoek binnen de verfindustrie dat zich vooral richt op de ontwikkeling van biobased coatings, maar niet noodzakelijk leidt tot een positieve invloed op de milieu-impact en de microplastic problematiek.Dit consortium wil de komende vier jaren gebruiken om kennis en inzichten te ontwikkelen waarmee op kg schaal twee verschillende biodegradeerbare coatings beschikbaar worden gemaakt als Basis Wit (BW) en Basis Transparant (BTr) variant (proof-of-concept schaal). Het publiek-private consortium achter dit project dekt de hele waarde- en kennisketen; van plantaardige reststomen, via de fermentatieve productie van vetzuren, polyhydroxyalkanoaten (PHA’s) en pigmenten/kleuren, groene additieven en binders, tot het maken van high-end verven op basis daarvan.ResultaatDe projectresultaten bestaan uit duurzame grondstoffen (kg schaal) die samen één geheel vormen in “groene” verfcoatings. De technische en economische opschaalbaarheid van de projectresultaten worden tevens onderbouwd.