Installing photovoltaic panels (PV) on household rooftops can significantly contribute to mitigating anthropogenic climate change. The mitigation potential will be much higher when households would use PVs in a sustainable way, that is, if they match their electricity demand to their PVs electricity production, as to avoid using electricity from the grid. Whilst some have argued that owning PVs motivate households to use their PV in a sustainable way, others have argued that owning a PV does not result in load shifting, or that PV owners may even use more energy when their PV production is low. This paper addresses this critical issue, by examining to what extent PV owners are likely to shift their electricity demand to reduce the use of electricity from the grid. Extending previous studies, we analyse actual high frequency electricity use from the grid using smart meter data of households with and without PVs. Specifically, we employ generalized additive models to examine whether hourly net electricity use (i.e., the difference between electricity consumed from the grid and supplied back to the grid) of households with PVs is not only lower during times when PV production is high, but also when PV production low, compared to households without PVs. Results indicate that during times when PV production is high, net electricity use of households with PV is negative, suggesting they sent back excess electricity to the power grid. However, we found no difference in net electricity use during times when PV production is low. This suggests that installing PV does not promote sustainable PV use, and that the mitigation potential of PV installment can be enhanced by encouraging sustainable PV use
LINK
PV systems are used more and more. Not always is it possible to install them in the optimal direction for maximum energy output over the year. At the Johan Cruijff ArenA the PV panels are placed all around the roof in all possible directions. Panels oriented to the north will have a lower energy gain than those oriented to the south. The 42 panel groups are connected to 8 electricity meters. Of these 8 energy meters monthly kWh produced are available. The first assignment is to calculate the energy gains of the 42 panel groups, and connect these in the correct way with the 8 energy meter readings, so simulated data is in accordance with measured data.Of the year 2017 there are also main electricity meter readings available for every quarter of an hour. A problem with these readings is that only absolute values are given. When electricity is taken of the grid this is a positive reading, but when there is a surplus of solar energy and electricity is delivered to the grid, this is also a positive reading. To see the effect on the electricity demand of future energy measures, and to use the Seev4-City detailed CO2 savings calculation with the electricity mix of the grid, it is necessary to know the real electricity demand of the building.The second assignment is to use the calculations of the first assignment to separate the 15 minute electricity meter readings in that for real building demand and for PV production.This document first gives information for teachers (learning goals, possible activities, time needed, further reading), followed by the assignment for students.
DOCUMENT
In order to improve the social acceptance of photovoltaic modules, the choice in panel color and size should be enlarged. Although various approaches have been reported to change the appearance of PV modules, it often adds complexity to the manufacturing process. Here an approach is presented in which a design module can be manufactured on standard module lines, by adding a print interlayer to the module. First results are shown on small PV panels, including performance and stability tests. Also full size panels are shown with an aluminum back panel including mounting structures for easy mounting on roofs and facades. The results show that although there is a drop in conversion efficiency by applying a print, the overall drop is lower than expected based on the print coverage. The stability tests show promising results after thermal cycling, damp heat, UV degradation and outdoor exposure.
MULTIFILE
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
Dynamic energy contracts, offering hourly varying day-ahead prices for electricity, create opportunities for a residential Battery Energy Storage System (BESS) to not just optimize the self-consumption of solar energy but also capitalize on price differences. This work examines the financial potential and impact on the self-consumption of a residential BESS that is controlled based on these dynamic energy prices for PV-equipped households in the Netherlands, where this novel type of contract is available. Currently, due to the Dutch Net Metering arrangement (NM) for PV panels, there is no financial incentive to increase self-consumption, but policy shifts are debated, affecting the potential profitability of a BESS. In the current situation, the recently proposed NM phase-out and the general case without NM are studied using linear programming to derive optimal control strategies for these scenarios. These are used to assess BESS profitability in the latter cases combined with 15 min smart meter data of 225 Dutch households to study variations in profitability between households. It follows that these variations are linked to annual electricity demand and feed-in pre-BESS-installation. A residential BESS that is controlled based on day-ahead prices is currently not generally profitable under any of these circumstances: Under NM, the maximum possible annual yield for a 5 kWh/3.68 kW BESS with day-ahead prices as in 2023 is EUR 190, while in the absence of NM, the annual yield per household ranges from EUR 93 to EUR 300. The proposed NM phase-out limits the BESS’s profitability compared to the removal of NM.
DOCUMENT
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
DOCUMENT
In Europe, green hydrogen and biogas/green gas are considered important renewable energy carriers, besides renewable electricity and heat. Still, incentives proceed slowly, and the feasibility of local green gas is questioned. A supply chain of decentralised green hydrogen production from locally generated electricity (PV or wind) and decentralised green gas production from locally collected biomass and biological power-to-methane technology was analysed and compared to a green hydrogen scenario. We developed a novel method for assessing local options. Meeting the heating demand of households was constrained by the current EU law (RED II) to reduce greenhouse gas (GHG) emissions by 80% relative to fossil (natural) gas. Levelised cost of energy (LCOE) analyses at 80% GHG emission savings indicate that locally produced green gas (LCOE = 24.0 €ct kWh−1) is more attractive for individual citizens than locally produced green hydrogen (LCOE = 43.5 €ct kWh−1). In case higher GHG emission savings are desired, both LCOEs go up. Data indicate an apparent mismatch between heat demand in winter and PV electricity generation in summer. Besides, at the current state of technology, local onshore wind turbines have less GHG emissions than PV panels. Wind turbines may therefore have advantages over PV fields despite the various concerns in society. Our study confirms that biomass availability in a dedicated region is a challenge.
DOCUMENT
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT
This OP was deployed in two phases, focusing on Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G). Its first phase took place at a private residence in Loughborough and ran from March 2017 up to December 2017. This phase 1 is also referred to as the ‘Loughborough pilot’. The second phase took place from February 2020 until present at a comparable residence in Burton-upon-Trent, thereafter, referred to as the ‘Burton pilot’ or ‘phase 2’. Both pilots included bi-directional chargers, Electric Vehicles (EV), Battery Static Storage (BSS) and rooftop solar PhotoVoltaic panels (PV).The main goals of this pilot were to demonstrate the added value of V2H and V2G of using additional energy storage and PV in households.Challenges encountered in the project include interoperability issues, particularly in phase 1, and the unforeseen development of the homeowner selling his house, meaning a new location needed to be found. However, this challenge ultimately provided an excellent opportunity to implement lessons for interoperability and to act upon the recommendations from the intermediate analysis of the Loughborough pilot. This report is mainly focussed on phase 1 (Loughborough), and additional analysis for Burton-upon-Trent (phase 2) can be found in the appendix.
DOCUMENT
The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified.
DOCUMENT