This paper aims to present a comprehensive investigation to obtain the structural calculations needed to design a rigid panel of aluminum alloy for the wing box beam of an ATR 72–500 aircraft. For this design process, several types of materials, including composites like CFRP, are considered so it is possible to compare the actual existing part made of aluminum to them, thus checking the advantages these new materials offer. The research presents an introduction to structural design and provides a study of the relevant literature. The aircraft's principal characteristics and performance abilities were collected so that structural loads can be computed. Research used several methods, a design using conventional methods, applying the theory of elasticity is performed using the Theory of Farrar, allowing us to obtain an analytical solution to the problem, followed by checking the obtained results using Ansys FEM software combined with the parts being designed with CATIA. Furthermore, this same panel is calculated using composite materials instead of conventional aluminum, allowing us to compare both solutions. This research shed light on the intricate process of aircraft structural design, materials selection, and calculation methodologies, highlighting the ongoing pursuit of new and advanced materials. This paper makes clear that using composite materials presents several advantages over traditional ones, allowing for lighter, safer, more fuel-efficient, and more sustainable aircraft. The use of composite materials in the construction of airplane structures is driven by many factors. The results show that the chosen composite materials reduce weight, are durable, have low maintenance requirements, reduce noise, enhance fuel economy, and are resistant to corrosion.
DOCUMENT
Design educators and industry partners are critical knowledge managers and co-drivers of change, and design graduate and post-graduate students can act as catalysts for new ideas, energy, and perspectives. In this article, we will explore how design advances industry development through the lens of a longitudinal inquiry into activities carried out as part of a Dutch design faculty-industry collaboration. We analyze seventy-five (75) Master of Science (MSc) thesis outcomes and seven (7) Doctorate (PhD) thesis outcomes (five in progress) to identify ways that design activities have influenced advances in the Dutch aviation industry over time. Based on these findings, we then introduce an Industry Design Framework, which organizes the industry/design relationship as a three-layered system. This novel approach to engaging industry in design research and design education has immediate practical value and theoretical significance, both in the present and for future research. https://doi.org/10.1016/j.sheji.2019.07.003 LinkedIn: https://www.linkedin.com/in/christine-de-lille-8039372/
MULTIFILE
This overview can be regarded as an atlas or travel guide with which the reader can follow a route along the various professorships. Chapter 2 centres on the professorships that are active in the field of Service Economy. Chapter 3 is dedicated to the professorships that are focussed on the field of Vital Region. Chapter 4 describes the professorships operating in the field of Smart Sustainable Industries. Chapter 5 deals with the professorships that are active in the field of the institution-wide themes of Design Based Education and Design Based Research. Lastly, in Chapter 6 we make an attempt to discover one or more connecting themes or procedures in the approach of the various professorships. This publication is not intended to give a definitive answer to the question as to what exactly NHL Stenden means by the concept of Design Based Research. The aim of this publication is to get an idea of everything that is happening in the NHL Stenden professorships and to pique one’s curiosity to find out more.
DOCUMENT
Design and research are two fields of knowledge that each has its traditions, methods, standards and practices. These two worlds appear to be quite separate, with researchers investigating what exists, and designers visualising what could be. This book builds a bridge between both worlds by showing how design and research can be integrated to develop a new field of knowledge. This book contains 22 inspiring reflections that demonstrate how the unique qualities of research (aimed at studying the present) and design (aimed at developing the future) can be combined. This book shows that the transdisciplinary approach is applicable in a multitude of sectors, ranging from healthcare, urban planning, circular economy, and the food industry. Arranged in five parts, the book offers a range of illustrative examples, experiences, methods, and interpretations. Together they make up the characteristic of a mosaic, each piece contributing a part of the complete picture, and all pieces together offering a multi-facted perspective of what applied design research is, how it is implemented and what the reader can expect from it.
MULTIFILE
From the article: Abstract The Information Axiom in axiomatic design states that minimising information is always desirable. Information in design may be considered to be a form of chaos and therefore is unwanted. Chaos leads to a lack of regularities in the design and unregulated issues tend to behave stochastically. Obviously, it is hard to satisfy the FRs of a design when it behaves stochastically. Following a recently presented and somewhat broader categorization of information, it appears to cause the most complication when information moves from the unrecognised to the recognised. The paper investigates how unrecognised information may be found and if it is found, how it can be addressed. Best practices for these investigations are derived from the Cynefin methodology. The Axiomatic Maturity Diagram is applied to address unrecognised information and to investigate how order can be restored. Two cases are applied as examples to explain the vexatious behaviour of unrecognised information.
MULTIFILE
Augmented Play Spaces (APS) are (semi-) public environments where playful interaction isfacilitated by enriching the existing environment with interactive technology. APS canpotentially facilitate social interaction and physical activity in (semi-)public environments. Incontrolled settings APS show promising effects. However, people’s willingness to engagewith APSin situ, depends on many factors that do not occur in aforementioned controlledsettings (where participation is obvious). To be able to achieve and demonstrate thepositive effects of APS when implemented in (semi-)public environments, it is important togain more insight in how to motivate people to engage with them and better understandwhen and how those decisions can be influenced by certain (design) factors. TheParticipant Journey Map (PJM) was developed following multiple iterations. First,based on related work, and insights gained from previously developed andimplemented APS, a concept of the PJM was developed. Next, to validate and refinethe PJM, interviews with 6 experts with extensive experience with developing andimplementing APS were conducted. Thefirst part of these interviews focused oninfluential (design) factors for engaging people into APS. In the second part, expertswere asked to provide feedback on thefirst concept of the PJM. Based on the insightsfrom the expert interviews, the PJM was adjusted and refined. The Participant JourneyMap consists of four layers: Phases, States, Transitions and Influential Factors. There aretwo overarchingphases:‘Onboarding’and‘Participation’and 6statesa (potential)participant goes through when engaging with an APS:‘Transit,’‘Awareness,’‘Interest,’‘Intention,’‘Participation,’‘Finishing.’Transitionsindicate movements between states.Influential factorsare the factors that influence these transitions. The PJM supportsdirections for further research and the design and implementation of APS. Itcontributes to previous work by providing a detailed overview of a participant journeyand the factors that influence motivation to engage with APS. Notable additions are thedetailed overview of influential factors, the introduction of the states‘Awareness,’‘Intention’and‘Finishing’and the non-linear approach. This will support taking intoaccount these often overlooked, key moments in future APS research and designprojects. Additionally, suggestions for future research into the design of APS are given.
DOCUMENT
Het zwaartepunt van de ingenieursopleiding is aan het verschuiven. De Utrechtse ingenieur zal zijn werk en toegevoegde waarde steeds meer vinden op het terrein van ontwerpen. Aan het ontwerpproces zelf worden steeds zwaardere eisen gesteld. Constructie en productie vinden in toenemende mate elders in de wereld plaats. Gelet op deze outsourcing zal de ontwerper ook in staat moeten zijn het maakproces op afstand te besturen, zowel wat betreft kwaliteit en geld als qua tijd. Ontwerpen kan vanuit verschillende perspectieven beschouwd worden: vanuit de conceptuele fase, de realisatiefase (verdere aanpassingen) of de gebruiksfase (upgrading, bediening et cetera). Bij onderzoeksinstellingen als TNO, maar ook bij vooraanstaande bedrijven als OCE, Philips en ASML zien we dat steeds meer sprake is van een integrale ontwerpaanpak. Het tijdperk van massaproductie evolueert naar een tijdperk van maatwerk, waarin de behoeften van de gebruiker centraal staan. De interactie tussen de technologie en de gebruiker zal een steeds belangrijker plaats in gaan nemen, en juist op dit vlak zal de Utrechtse ingenieur zich onderscheiden.
DOCUMENT
This book is both a short introduction to the recent developments, challenges and opportunities in Aviation Maintenance, Repair and Overhaul(MRO), and at the same time, a presentation of the research focal areas and the key waypoints towards smarter and more sustainable MRO. Innovation and integration have always been key aspects of Aviation. Currently, evolutions in aircraft design, materials and production techniques are ahead of the MRO practices in use.This gap is creating demand for new knowledge to develop and operationalise adaptive, digital and sustainable MRO tools, applicable or integrated in modern aircraft systems and components.
DOCUMENT
Progetto Ustica is an experiment in "civically-engaged game design" and addresses the Ustica Massacre ("Strage di Ustica"), where 81 people lost their lives as an air-to-air missile hit a civilian aircraft in 1980. Progetto Ustica has been developed as part of an Action Research effort with the objective of preserving and transmitting the historical memory of the event. With this post-mortem essay, we reflect on the game design challenges that Progetto Ustica faced, we introduce different conceptualizations of "memory" emerging from our design practice, and we synthesize some lessons learned (implications for design) towards other "civically-engaged games" for socio-cultural heritage.
DOCUMENT