BACKGROUND: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak.METHODS: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342).FINDINGS: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7-7·1), PEEP was 14·0 cm H2O (IQR 11·0-15·0), and driving pressure was 14·0 cm H2O (11·2-16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0-39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0-15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation.INTERPRETATION: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19.FUNDING: Amsterdam University Medical Centers, location Academic Medical Center.
DOCUMENT
BACKGROUND:Endotracheal suctioning causes discomfort, is associated with adverse effects, and is resource-demanding. An artificial secretion removal method, known as an automated cough, has been developed, which applies rapid, automated deflation, and inflation of the endotracheal tube cuff during the inspiratory phase of mechanical ventilation. This method has been evaluated in the hands of researchers but not when used by attending nurses. The aim of this study was to explore the efficacy of the method over the course of patient management as part of routine care.METHODS:This prospective, longitudinal, interventional study recruited 28 subjects who were intubated and mechanically ventilated. For a maximum of 7 d and on clinical need for endotracheal suctioning, the automatic cough procedure was applied. The subjects were placed in a pressure-regulated ventilation mode with elevated inspiratory pressure, and automated cuff deflation and inflation were performed 3 times, with this repeated if deemed necessary. Success was determined by resolution of the clinical need for suctioning as determined by the attending nurse. Adverse effects were recorded.RESULTS:A total of 84 procedures were performed. In 54% of the subjects, the artificial cough procedure was successful on > 70% of occasions, with 56% of all procedures considered successful. Ninety percent of all the procedures were performed in subjects who were spontaneously breathing and on pressure-support ventilation with peak inspiratory pressures of 20 cm H2O. Rates of adverse events were similar to those seen in the application of endotracheal suctioning.CONCLUSIONS:This study solely evaluated the efficacy of an automated artificial cough procedure, which illustrated the potential for reducing the need for endotracheal suctioning when applied by attending nurses in routine care.
DOCUMENT
BACKGROUND: The intensity of ventilation, reflected by driving pressure (ΔP) and mechanical power (MP), has an association with outcome in invasively ventilated patients with or without acute respiratory distress syndrome (ARDS). It is uncertain if a similar association exists in coronavirus disease 2019 (COVID-19) patients with acute respiratory failure.METHODS: We aimed to investigate the impact of intensity of ventilation on patient outcome. The PRoVENT-COVID study is a national multicenter observational study in COVID-19 patients receiving invasive ventilation. Ventilator parameters were collected a fixed time points on the first calendar day of invasive ventilation. Mean dynamic ΔP and MP were calculated for individual patients at time points without evidence of spontaneous breathing. A Cox proportional hazard model, and a double stratification analysis adjusted for confounders were used to estimate the independent associations of ΔP and MP with outcome. The primary endpoint was 28-day mortality.RESULTS: In 825 patients included in this analysis, 28-day mortality was 27.5%. ΔP was not independently associated with mortality (HR 1.02 [95% confidence interval 0.88-1.18]; P = 0.750). MP, however, was independently associated with 28-day mortality (HR 1.17 [95% CI 1.01-1.36]; P = 0.031), and increasing quartiles of MP, stratified on comparable levels of ΔP, had higher risks of 28-day mortality (HR 1.15 [95% CI 1.01-1.30]; P = 0.028).CONCLUSIONS: In this cohort of critically ill invasively ventilated COVID-19 patients with acute respiratory failure, we show an independent association of MP, but not ΔP with 28-day mortality. MP could serve as one prognostic biomarker in addition to ΔP in these patients. Efforts aiming at limiting both ΔP and MP could translate in a better outcome. Trial registration Clinicaltrials.gov (study identifier NCT04346342).
DOCUMENT