We present a number of methodological recommendations concerning the online evaluation of avatars for text-to-sign translation, focusing on the structure, format and length of the questionnaire, as well as methods for eliciting and faithfully transcribing responses.
LINK
This paper identifies some common and specific pitfalls in the development of sign language technologies targeted at deaf communities, with a specific focus on signing avatars. It makes the call to urgently interrogate some of the ideologies behind those technologies, including issues of ethical and responsible development. The paper addresses four separate and interlinked issues: ideologies about deaf people and mediated communication, bias in data sets and learning, user feedback, and applications of the technologies. The paper ends with several take away points for both technology developers and deaf NGOs. Technology developers should give more consideration to diversifying their team and working interdisciplinary, and be mindful of the biases that inevitably creep into data sets. There should also be a consideration of the technologies’ end users. Sign language interpreters are not the end users nor should they be seen as the benchmark for language use. Technology developers and deaf NGOs can engage in a dialogue about how to prioritize application domains and prioritize within application domains. Finally, deaf NGOs policy statements will need to take a longer view, and use avatars to think of a significantly better system compared to what sign language interpreting services can provide.
LINK
In de afgelopen jaren hebben technologische ontwikkelingen de aard van dienstverlening ingrijpend veranderd (Huang & Rust, 2018). Technologie wordt steeds vaker ingezet om menselijke servicemedewerkers te vervangen of te ondersteunen (Larivière et al., 2017; Wirtz et al., 2018). Dit stelt dienstverleners in staat om meer klanten te bedienen met minder werknemers, waardoor de operationele efficiëntie toeneemt (Beatson et al., 2007). Deze operationele efficiëntie leidt weer tot lagere kosten en een groter concurrentievermogen. Ook voor klanten kan de inzet van technologie voordelen hebben, zoals betere toegankelijkheid en consistentie, tijd- en kostenbesparing en (de perceptie van) meer controle over het serviceproces (Curran & Meuter, 2005). Mede vanwege deze beoogde voordelen is de inzet van technologie in service-interacties de afgelopen twee decennia exponentieel gegroeid. De inzet van zogenaamde conversational agents is een van de belangrijkste manieren waarop dienstverleners technologie kunnen inzetten om menselijke servicemedewerkers te ondersteunen of vervangen (Gartner, 2021). Conversational agents zijn geautomatiseerde gesprekspartners die menselijk communicatief gedrag nabootsen (Laranjo et al., 2018; Schuetzler et al., 2018). Er bestaan grofweg drie soorten conversational agents: chatbots, avatars, en robots. Chatbots zijn applicaties die geen virtuele of fysieke belichaming hebben en voornamelijk communiceren via gesproken of geschreven verbale communicatie (Araujo, 2018;Dale, 2016). Avatars hebben een virtuele belichaming, waardoor ze ook non-verbale signalen kunnen gebruiken om te communiceren, zoals glimlachen en knikken (Cassell, 2000). Robots, ten slotte, hebben een fysieke belichaming, waardoor ze ook fysiek contact kunnen hebben met gebruikers (Fink, 2012). Conversational agents onderscheiden zich door hun vermogen om menselijk gedrag te vertonen in service-interacties, maar op de vraag ‘hoe menselijk is wenselijk?’ bestaat nog geen eenduidig antwoord. Conversational agents als sociale actoren Om succesvol te zijn als dienstverlener, is kwalitatief hoogwaardige interactie tussen servicemedewerkers en klanten van cruciaal belang (Palmatier et al., 2006). Dit komt omdat klanten hun percepties van een servicemedewerker (bijv. vriendelijkheid, bekwaamheid) ontlenen aan diens uiterlijk en verbale en non verbale gedrag (Nickson et al., 2005; Specht et al., 2007; Sundaram & Webster, 2000). Deze klantpercepties beïnvloeden belangrijke aspecten van de relatie tussen klanten en dienstverleners, zoals vertrouwen en betrokkenheid, die op hun beurt intentie tot gebruik, mond-tot-mondreclame, loyaliteit en samenwerking beïnvloeden (Hennig-Thurau, 2004; Palmatier et al., 2006).Er is groeiend bewijs dat de uiterlijke kenmerken en communicatieve gedragingen (hierna: menselijke communicatieve gedragingen) die percepties van klanten positief beïnvloeden, ook effectief zijn wanneer ze worden toegepast door conversational agents (B.R. Duffy, 2003; Holtgraves et al., 2007). Het zogenaamde ‘Computers Als Sociale Actoren’ (CASA paradigma vertrekt vanuit de aanname dat mensen de neiging hebben om onbewust sociale regels en gedragingen toe te passen in interacties met computers, ondanks het feit dat ze weten dat deze computers levenloos zijn (Nass et al., 1994). Dit kan verder worden verklaard door het fenomeen antropomorfisme (Epley et al., 2007; Novak & Hoffman, 2019). Antropomorfisme houdt in dat de aanwezigheid van mensachtige kenmerken of gedragingen in niet-menselijke agenten, onbewust cognitieve schema's voor menselijke interactie activeert (Aggarwal & McGill, 2007; M.K. Lee et al., 2010). Door computers te antropomorfiseren komen mensen tegemoet aan hun eigen behoefte aan sociale verbinding en begrip van de sociale omgeving (Epley et al., 2007; Waytz et al., 2010). Dit heeft echter ook tot gevolg dat mensen cognitieve schema’s voor sociale perceptie toepassen op conversational agents.