Lopend onderzoek: Voorstelling van het onderzoek over de periode april 2007 – juni 2011.Koninklijke Visio, locatie De Brink is een expertisecentrum dat gespecialiseerd is in de zorg- en dienstverlening voor mensen met een (zeer) ernstige verstandelijke en visuele beperking. Voor mensen met beperkingen is bewegen minder vanzelfsprekend dan voor mensen zonder beperkingen. Dit geldt in nog sterkere mate voor de cliënten van Visio De Brink, die een meervoudige beperking hebben: de combinatie van beperkingen maakt dat compensaties wegvallen en beperkingen elkaar versterken. Door deze combinatie van beperkingen bleken voor deze doelgroep bestaande fittesten niet uitvoerbaar en betrouwbaar tijdens een pilot in 2006.‘Als fit zijn van groot belang is, hoe is het dan gesteld met de fitheid van cliënten van De Brink?’ En: ‘hoe kunnen we dat meten?’ Deze vragen vormden voor Visio De Brink in het jaar 2007 aanleiding om een toegepast onderzoeksproject op te zetten met als doel het verkrijgen van inzicht in de mate van fitheid van haar cliënten. In eerste instantie richtte dit project zich op het aanpassen van bestaande testprocedures en meetmethodes voor mensen met (zeer) ernstige verstandelijke en visuele beperkingen. In de tweede plaats richtte het project zich op de betrouwbaarheid van de testen en de metingen bij deze doelgroep.
Het belang van innovatie voor economische groei en het scheppen van werkgelegenheid in het MKB wordt erkend door zowel academici als politici. Er worden daarom programma’s ontwikkeld om innovatie te stimuleren. Met deze maatregelen ontstaat de vraag te bepalen of deze initiatieven succesvol zijn en zo ja, in welke mate. In de literatuur hebben we geen indicator gevonden die ons in staat stelt de mate van innovativiteit van MKB bedrijven te bepalen voor een dergelijke interventie en daarna. De hoofdvraag van ons onderzoek was dan ook: hoe kunnen we het effect van een interventie voor het bevorderen van de innovatiekracht van MKB-bedrijven meten? Kijkend naar de definities van innovatie zoals die zijn verzameld door King & Anderson (2002) hebben we vastgesteld dat een bedrijf innovatief genoemd mag worden als het met opzeten succesvol nieuwe ideeën implementeert. Succesvol wil in dit verband zeggen: het draagt bij aan de winst en dus aan de continuïteit van het desbetreffende MKB-bedrijf. Door de verschillende (bewuste) innovaties te identificeren samen met de ondernemer en te berekenen wat de winstgevendheid is geweest van de innovaties, kunnen we de ’innovatiewinst’ van de ondernemer berekenen. Dit bedrag delen door de omzet creëert een indicator waarmee de innovativiteit van de organisatie door de tijd gemeten kan worden. Wij stellen daarom de volgende definitie van innovatiekracht voor: KIKR = [ [Winst Innovatie1+Winst Innovatie2+ ... +Winst Innovatie5] / Omzet] x 100. De ratio kan alleen met voldoende betrouwbaarheid bepaald worden door een gestructureerd interview met de directeur/ eigenaar van de het bedrijf door een gekwalificeerde gesprekspartner. De auteurs realiseren zich dat dit gesprek op zichzelf misschien een interventie is, omdat de ervaring leert dat het innovatiebewustzijn van de ondernemer er door toeneemt. Om te bepalen of dit daadwerkelijk zo is, en om te testen of de KIKR inderdaad als bruikbare maat voor innovatiekracht kan worden gebruikt is vervolgonderzoek noodzakelijk. Desalniettemin zijn de auteurs van mening dat met de KIKR de innovatiekracht van bedrijven door de tijd heen gemeten kan worden en daarmee een bruikbaar instrument is om het effect te bepalen van interventies die innovatiekracht moeten vergroten. The importance of innovation as an engine for economic growth and the creation of employment opportunities is acknowledged by both academia and politicians. This makes the need for good innovation measures crucial. In the third edition of the Oslo Manual (2005), a need for proper indicators to capture the changes in the nature and landscape of innovation is voiced. According to the manual, a considerable body of models and analytical frameworks for innovation were developed in the 1980s and 1990s. Over time, the scope of what is considered as innovation has been widened and expanded to include marketing and organizational innovation. In this paper, we focus on innovative performance as a measure of success. This is part of ongoing research in the Netherlands in The Hague region. This research is framed within an approach based on action research. We have worked with 45 SMEs in four sectors. This has formed the basis for the conceptual development of innovative performance as a new metric for the measurement of a successful innovation. In this paper, we review our findings thus far and explore the validity of innovative performance as an appropriate indicator for measuring innovation within SMEs.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
De maatschappelijke discussies over de invloed van AI op ons leven tieren welig. De terugkerende vraag is of AI-toepassingen – en dan vooral recommendersystemen – een dreiging of een redding zijn. De impact van het kiezen van een film voor vanavond, met behulp van Netflix' recommendersysteem, is nog beperkt. De impact van datingsites, navigatiesystemen en sociale media – allemaal systemen die met algoritmes informatie filteren of keuzes aanraden – is al groter. De impact van recommendersystemen in bijvoorbeeld de zorg, bij werving en selectie, fraudedetectie, en beoordelingen van hypotheekaanvragen is enorm, zowel op individueel als op maatschappelijk niveau. Het is daarom urgent dat juist recommendersystemen volgens de waarden van Responsible AI ontworpen worden: veilig, eerlijk, betrouwbaar, inclusief, transparant en controleerbaar.Om op een goede manier Responsible AI te ontwerpen moeten technische, contextuele én interactievraagstukken worden opgelost. Op het technische en maatschappelijke niveau is al veel vooruitgang geboekt, respectievelijk door onderzoek naar algoritmen die waarden als inclusiviteit in hun berekening meenemen, en door de ontwikkeling van wettelijke kaders. Over implementatie op interactieniveau bestaat daarentegen nog weinig concrete kennis. Bekend is dat gebruikers die interactiemogelijkheden hebben om een algoritme bij te sturen of aan te vullen, meer transparantie en betrouwbaarheid ervaren. Echter, slecht ontworpen interactiemogelijkheden, of een mismatch tussen interactie en context kosten juist tijd, veroorzaken mentale overbelasting, frustratie, en een gevoel van incompetentie. Ze verhullen eerder dan dat ze tot transparantie leiden.Het ontbreekt ontwerpers van interfaces (UX/UI designers) aan systematische concrete kennis over deze interactiemogelijkheden, hun toepasbaarheid, en de ethische grenzen. Dat beperkt hun mogelijkheid om op interactieniveau aan Responsible AI bij te dragen. Ze willen daarom graag een pattern library van interactiemogelijkheden, geannoteerd met onderzoek over de werking en inzetbaarheid. Dit bestaat nu niet en met dit project willen we een substantiële bijdrage leveren aan de ontwikkeling ervan.
Het KIEM High Tech project ALIGN beoogt de verbetering van fiberoptische gyroscoop (FOG)-productie door het huidige handmatige uitlijnproces van optische fibers en de lichtbron te automatiseren. In de luchtvaart, waar precisie en betrouwbaarheid cruciaal zijn, spelen FOG’s een essentiële rol bij het meten van de oriëntatieveranderingen van vliegtuigen. Een consistente productie van de FOG’s leidt tot een betrouwbaarder en veiliger vliegtuig. Hoewel het product voldoet aan de eisen die de luchtvaart stelt, veroorzaakt de huidige productiemethode variabiliteit in sensorprestaties, en men begrijpt niet volledig waarom dit gebeurt. Het consortium bestaande uit Patria, IMS, en het lectoraat Applied Nanotechnology (ANT) van Saxion wil een proof-of-concept demonstreren voor geautomatiseerde uitlijning, met de focus op fiberdetectie en manipulatie, uitlijnalgoritmes, en stabiele prestaties van het eindproduct. Het innovatieve aspect omvat het onderzoek naar geschikte automatiseringsmethoden, rekening houdend met fixatie van de optische componenten door solderen. Huidige automatiseringsoplossingen zijn duur en zijn niet altijd geschikt voor fixatie van optische componenten bij hoge temperaturen. Het projectplan omvat verschillende activiteiten, waaronder onderzoek naar fibermanipulatie en control, vision, en integratie en verificatie. Het doel is het creëren van een werkende proof-of-concept demonstrator die voldoet aan de gestelde eisen van het productieproces en het eindproduct. De kennis uit dit project wordt opgenomen in onderwijsmodules van verschillende opleidingen, en kan een opmaat zijn voor een vervolgproject in het RAAK MKB programma. Het consortium beoogt de kritische stappen in fiberoptische uitlijning te begrijpen en een geautomatiseerde oplossing te ontwikkelen voor consistente FOG-productie. Het project draagt niet alleen bij aan de luchtvaartindustrie maar heeft ook bredere toepassingen, zoals bij de uitlijning van photonic integrated circuits, waardoor het een waardevolle bijdrage levert aan de ontwikkeling van geavanceerde productieprocessen in de optische fibers-industrie.