Big data heeft niet alleen geleid tot uitdagende technische vraagstukken, ook gaat het gepaard met allerlei nieuwe ethische en morele kwesties. Om verantwoord met big data om te gaan, moet ook over deze kwesties worden nagedacht. Want slecht datagebruik kan nadelige gevolgen hebben voor grote groepen mensen en voor organisaties. In de slotaflevering van deze serie verkennen Klaas Jan Mollema en Niek van Antwerpen op een pragmatische manier de ethische kant van big data, zonder te blijven steken in de negatieve effecten ervan.
DOCUMENT
“Natuurlijk is het leuk dat mijn koelkast zelf melk bestelt op basis van data gerelateerde patronen. Deep learning op basis van big data kent grote beloften,” zegt Frans van der Reep van Inholland. Geen wonder dat dit op de Hannover Messe tijdens de Wissenstag van ScienceGuide een hoofdthema zal zijn. "Big data belooft ook praktische gemakken. Tegelijkertijd creëren we daarmee ‘unelected power’ (Spectre!) bij de tech-bedrijven en het is dan de vraag hoe we daar als samenleving mee om gaan. Wat betekent het als mensen uitsluitend nog op jou reageren - en jij op hen – aan de hand van wat ‘het algoritme’ heeft uitgerekend’? Realiseren we in wat voor wereld we dan terecht komen? Hoe vrij kunnen we dan nog zijn?
DOCUMENT
Big data-evangelisten verkondigen dat ‘you can only manage what you measure’. Blabla. Want de financiële crisis heeft aangetoond dat we slecht zijn in het managen van wat we meten. Mislukte fusies en productlanceringen, veelvuldige imagoproblemen en social media-escapades geven aan dat we vooral beter moeten worden in het managen van datgene wat we niet kunnen meten. Met of zonder big data.
LINK
presentatie over Publieke Waarde, Big Data en de rol van Finance in onderwijsveld
DOCUMENT
Although governments are investing heavily in big data analytics, reports show mixed results in terms of performance. Whilst big data analytics capability provided a valuable lens in business and seems useful for the public sector, there is little knowledge of its relationship with governmental performance. This study aims to explain how big data analytics capability led to governmental performance. Using a survey research methodology, an integrated conceptual model is proposed highlighting a comprehensive set of big data analytics resources influencing governmental performance. The conceptual model was developed based on prior literature. Using a PLS-SEM approach, the results strongly support the posited hypotheses. Big data analytics capability has a strong impact on governmental efficiency, effectiveness, and fairness. The findings of this paper confirmed the imperative role of big data analytics capability in governmental performance in the public sector, which earlier studies found in the private sector. This study also validated measures of governmental performance.
MULTIFILE
In dit rapport worden de activiteiten van Big Data Value Center in het project ‘Databoeren met boerendata in de aardappelsector’, een POP3 project, beschreven. Het BDVC heeft samen met Geronimo een proof of concept ontwikkeld op automatische voorzet ‘MijnPrecelen’ in RVO. Trefwoorden: digitalisering boerenbedrijf, pop3, databoeren, Proof of Concept, MijnPercelenRVO zaaknummer: 17717000042
DOCUMENT
Technisch gezien hebben mensen heden ten dage meer tijd; we slapen minder dan 20 jaar geleden en efficiency viert hoogtij. Toch is tijdgebrek een veelgehoorde klacht. Vandaar dat de reeks ‘digitale trends en tools in 60 minuten’ hierop inspringt. Hiermee kan de lezer in korte tijd inzicht krijgen in hedendaagse technologische vraagstukken. ‘Meer weten van big data’ geschreven door Dik Bijl is de laatste loot aan deze reeks van uitgeverij Haystack. Uiteraard zijn er meer boeken geschreven over big data, maar zoals Bijl stelt: “Dit is het eerste boekje dat je in een mum van tijd laat kennis maken met big data”. In slechts zes hoofdstukken wordt de lezer ingewijd in algoritmes, machine learning en digitale transformaties. Uiteraard wordt stilgestaan hoe je zelf aan de slag kan met big data om uiteindelijk de eigen organisatie te professionaliseren. Eerlijk is eerlijk, de kracht van het format is om moeilijke klinkende digitale begrippen binnen 60 minuten uit te leggen. Toch is de vluchtigheid van deze 60 minuten-reeks een valkuil. Niet gek want het menselijke werkgeheugen is kortstondig en kwetsbaar. Het duurt enige uren tot enkele dagen voordat nieuwe informatie betrouwbaar wordt opgenomen in ons lange termijn geheugen. Al met al is meer weten van big data in 60 minuten aardig om snel kennis te verkrijgen maar om echt te beklijven, heb ik het toch tweemaal moeten lezen. En zo was mijn tijdwinst weg!
DOCUMENT
Onderzoeksrapportage vanuit een samenwerkingsverband met Avebe Foxhol
DOCUMENT
This paper provides a management perspective of organisational factors that contributes to the reduction of food waste through the application of design science principles to explore causal relationships between food distribution (organisational) and consumption (societal) factors. Qualitative data were collected with an organisational perspective from commercial food consumers along with large-scale food importers, distributors, and retailers. Cause-effect models are built and “what-if” simulations are conducted through the development and application of a Fuzzy Cognitive Map (FCM) approaches to elucidate dynamic interrelationships. The simulation models developed provide a practical insight into existing and emergent food losses scenarios, suggesting the need for big data sets to allow for generalizable findings to be extrapolated from a more detailed quantitative exercise. This research offers itself as evidence to support policy makers in the development of policies that facilitate interventions to reduce food losses. It also contributes to the literature through sustaining, impacting and potentially improving levels of food security, underpinned by empirically constructed policy models that identify potential behavioural changes. It is the extension of these simulation models set against a backdrop of a proposed big data framework for food security, where this study sets avenues for future research for others to design and construct big data research in food supply chains. This research has therefore sought to provide policymakers with a means to evaluate new and existing policies, whilst also offering a practical basis through which food chains can be made more resilient through the consideration of management practices and policy decisions.
LINK
De balans tussen de belastbaarheid van sporters en de belasting moeten zo goed mogelijk afgestemd zijn om optimale trainingseffecten te realizeren. Er wordt onderscheid gemaakt tussen externe en interne trainingsbelasting, wat duidt op de belasting die extern of intern door de sporter wordt ervaren. Het sturen en bewaken van de balans wordt bij professionele sporters doorgaans verzorgd door (para)medische professionals en/of sportwetenschappers. Doordat er tegenwoordig vele manieren van test- en meettechnologie zijn om o.a. interne en externe belasting te meten is er een grote hoeveelheid aan data beschikbaar in de praktijk, waarvan het verwerken en analyseren arbeidsintensief is. Daarom is er vanuit de praktijk de behoefte om deze data snel inzichtelijk te maken. Vanuit het project is daarom een belastingsmonitor ontwikkeld o.b.v. big data technologieën. Het doel van dit rapport is een praktijkvalidatie van de belastingmonitor. Hierbij wordt enerzijds gekeken naar de verzamelde data door de praktijkpartners en anderzijds wordt onderzocht of veranderingen in ratio's tussen interne:externe belasting een valide manier is om veranderingen in fysieke fitheid te meten?Data door de praktijkpartners zijn op diverse manieren en voor diverse variabelen verzameld. De variabelen zijn onder te delen in de kopjes: (I) individuele kenmerken, (II) externe belasting, (III) interne belasting, (IV) herstel en (V) psychosociale stress. Doordat de diverse sportclubs variabelen verzamelen die zij van belang achten is het niet mogelijk geweest om 1 database op te stellen welke alle variabelen bevat. Hierin zou immers duidelijk moeten zijn wat per variabelen de definitie is, welke per sportclub kan verschillen. Voor toekomstige projecten is het wenselijk om hier uniformiteit in aan te brengen voor aanvang van het project. Dit zal eenvoudiger zijn naarmate ruwe data beschikbaar is, omdat het onwaarschijnlijk is dat de sportclubs hun definities aanpassen. De gebruikte meetinstrumenten en -methodes zijn voor het overgrote deel overeenkomstig uit de wetenschappelijke literatuur en tevens overeenkomstig met de wetenschappelijke standaard. Kanttekening is dat er voor dit rapport geen zicht is op de daadwerkelijke uitvoering van de betreffende metingen.De vraag of de veranderingen in ratio's tussen interne:externe belasting een valide manier is om veranderingen in fysieke fitheid te meten is beantwoord door gebruik te maken van een dataset van 1 voetbalclub (van 3 teams) over 2 seizoenen. Er gekeken of veranderingen in ratio's opgesteld uit diverse maten voor interne belasting (ervaren mate van inspanning en load) en externe belasting (totaal gelopen afstand en totaal gelopen afstand op hoge snelheid) met diverse tijdsintervallen een relatie vertoonden met veranderingen in fysieke fitheid, gemeten met gestandaardiseerde submaximale inspanningstesten. Uit de resultaten bleek dat er geen relatie is gevonden tussen vooraf genoemde variabelen. Er blijken diverse obstakels te zijn waardoor de verandering in ratio’s mogelijk niet correleren met de verandering in interne belasting tijdens fysieke testen. De belastingsmonitor kan dus niet gebruikt worden om fysieke fitheid van sporters inzichtelijk te maken wanneer gekeken wordt naar de opgestelde ratio’s tussen interne en externe belasting. Fysieke testen blijven hiervoor nog steeds noodzakelijk, omdat deze het beste beeld geven van de huidige fysieke fitheid van de sporters. De belastingsmonitor is daarom, voor nu, alleen geschikt voor het afzonderlijk inzichtelijk maken van de diverse variabelen uit de dataset.
DOCUMENT