Abstract: Background: Chronic obstructive pulmonary disease (COPD) and asthma have a high prevalence and disease burden. Blended self-management interventions, which combine eHealth with face-to-face interventions, can help reduce the disease burden. Objective: This systematic review and meta-analysis aims to examine the effectiveness of blended self-management interventions on health-related effectiveness and process outcomes for people with COPD or asthma. Methods: PubMed, Web of Science, COCHRANE Library, Emcare, and Embase were searched in December 2018 and updated in November 2020. Study quality was assessed using the Cochrane risk of bias (ROB) 2 tool and the Grading of Recommendations, Assessment, Development, and Evaluation. Results: A total of 15 COPD and 7 asthma randomized controlled trials were included in this study. The meta-analysis of COPD studies found that the blended intervention showed a small improvement in exercise capacity (standardized mean difference [SMD] 0.48; 95% CI 0.10-0.85) and a significant improvement in the quality of life (QoL; SMD 0.81; 95% CI 0.11-1.51). Blended intervention also reduced the admission rate (relative ratio [RR] 0.61; 95% CI 0.38-0.97). In the COPD systematic review, regarding the exacerbation frequency, both studies found that the intervention reduced exacerbation frequency (RR 0.38; 95% CI 0.26-0.56). A large effect was found on BMI (d=0.81; 95% CI 0.25-1.34); however, the effect was inconclusive because only 1 study was included. Regarding medication adherence, 2 of 3 studies found a moderate effect (d=0.73; 95% CI 0.50-0.96), and 1 study reported a mixed effect. Regarding self-management ability, 1 study reported a large effect (d=1.15; 95% CI 0.66-1.62), and no effect was reported in that study. No effect was found on other process outcomes. The meta-analysis of asthma studies found that blended intervention had a small improvement in lung function (SMD 0.40; 95% CI 0.18-0.62) and QoL (SMD 0.36; 95% CI 0.21-0.50) and a moderate improvement in asthma control (SMD 0.67; 95% CI 0.40-0.93). A large effect was found on BMI (d=1.42; 95% CI 0.28-2.42) and exercise capacity (d=1.50; 95% CI 0.35-2.50); however, 1 study was included per outcome. There was no effect on other outcomes. Furthermore, the majority of the 22 studies showed some concerns about the ROB, and the quality of evidence varied. Conclusions: In patients with COPD, the blended self-management interventions had mixed effects on health-related outcomes, with the strongest evidence found for exercise capacity, QoL, and admission rate. Furthermore, the review suggested that the interventions resulted in small effects on lung function and QoL and a moderate effect on asthma control in patients with asthma. There is some evidence for the effectiveness of blended self-management interventions for patients with COPD and asthma; however, more research is needed. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42019119894; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=119894
DOCUMENT
A loss of physical functioning (i.e., a low physical capacity and/or a low physical activity) is a common feature in patients with chronic obstructive pulmonary disease (COPD). To date, the primary care physiotherapy and specialized pulmonary rehabilitation are clearly underused, and limited to patients with a moderate to very severe degree of airflow limitation (GOLD stage 2 or higher). However, improved referral rates are a necessity to lower the burden for patients with COPD and for society. Therefore, a multidisciplinary group of healthcare professionals and scientists proposes a new model for referral of patients with COPD to the right type of exercise-based care, irrespective of the degree of airflow limitation. Indeed, disease instability (recent hospitalization, yes/no), the burden of disease (no/low, mild/moderate or high), physical capacity (low or preserved) and physical activity (low or preserved) need to be used to allocate patients to one of the six distinct patient profiles. Patients with profile 1 or 2 will not be referred for physiotherapy; patients with profiles 3–5 will be referred for primary care physiotherapy; and patients with profile 6 will be referred for screening for specialized pulmonary rehabilitation. The proposed Dutch model has the intention to get the right patient with COPD allocated to the right type of exercise-based care and at the right moment.
DOCUMENT
The primary aims of this study were (1) to evaluate whole-body mechanical efficiency (ME) in a large group of chronic obstructive pulmonary disease (COPD) patients with a wide range of degrees of illness and (2) to examine how ME in COPD is related to absolute work rate and indices of disease severity during exercise testing. A total of 569 patients (301 male patients; GOLD stage I: 28, GOLD stage II: 166, GOLD stage III: 265, and GOLD stage IV: 110) with chronic obstructive pulmonary disease (COPD) were included in the data analysis. Individual maximal workload (watt), peak minute ventilation ((Equation is included in full-text article.)E, L/min body temperature and pressure, saturated), and peak oxygen uptake ((Equation is included in full-text article.)O2, mL/min standard temperature and pressure, dry) were determined from a maximal incremental cycle ergometer test. Ventilatory and metabolic response parameters were collected during a constant work rate test at 75% of the individual maximal workload. From the exercise responses of the constant work rate test, the gross ME was calculated. The mean whole-body gross ME was 11.0 ± 3.5% at 75% peak power. The ME declined significantly (P < .001) with increasing severity of the disease when measured at the same relative power. Log-transformed absolute work rate (r = .87, P < .001) was the strongest independent predictor of gross ME. Body mass was the single other variable that contributed significantly to the linear regression model. Gross ME in COPD was largely predicted by the absolute work rate (r = .87; P < .001) while indices of the severity of the disease did not predict ME in COPD.
DOCUMENT
A substantial proportion of chronic disease patients do not respond to self-management interventions, which suggests that one size interventions do not fit all, demanding more tailored interventions. To compose more individualized strategies, we aim to increase our understanding of characteristics associated with patient activation for self-management and to evaluate whether these are disease-transcending. A cross-sectional survey study was conducted in primary and secondary care in patients with type-2 Diabetes Mellitus (DM-II), Chronic Obstructive Pulmonary Disease (COPD), Chronic Heart Failure (CHF) and Chronic Renal Disease (CRD). Using multiple linear regression analysis, we analyzed associations between self-management activation (13-item Patient Activation Measure; PAM-13) and a wide range of socio-demographic, clinical, and psychosocial determinants. Furthermore, we assessed whether the associations between the determinants and the PAM were disease-transcending by testing whether disease was an effect modifier. In addition, we identified determinants associated with low activation for self-management using logistic regression analysis. We included 1154 patients (53% response rate); 422 DM-II patients, 290 COPD patients, 223 HF patients and 219 CRD patients. Mean age was 69.6±10.9. Multiple linear regression analysis revealed 9 explanatory determinants of activation for selfmanagement: age, BMI, educational level, financial distress, physical health status, depression, illness perception, social support and underlying disease, explaining a variance of 16.3%. All associations, except for social support, were disease transcending. This study explored factors associated with varying levels of activation for self-management. These results are a first step in supporting clinicians and researchers to identify subpopulations of chronic disease patients less likely to be engaged in self-management. Increased scientific efforts are needed to explain the greater part of the factors that contribute to the complex nature of patient activation for self-management.
DOCUMENT
If eHealth interventions are not used (properly), their potential benefits cannot be fulfilled. User perceptions of eHealth are an important determinant of its successful implementation. This study examined how patients with chronic obstructive pulmonary disease (COPD) and their physiotherapists (PHTs) value an eHealth self-management intervention following a period of use. The study aimed to evaluate the perceptions of COPD patients and their PHTs as eHealth users. In this study, an eHealth self-management intervention (website and mobile phone app) aimed at stimulating physical activity (PA) in COPD patients was evaluated by its users (patients and PHTs). As participants in a randomized controlled trial (RCT), they were asked how they valued the eHealth intervention after 6 months’ use. Interview requests were made to 33 PHTs from 26 participating practices, and a questionnaire was sent to 76 patients. The questionnaire was analyzed in Excel (Microsoft). The interviews with the PHTs and text messages (short message service, SMS) sent between patients and PHTs were transcribed and independently coded in MAXQDA 10 for Windows (VERBI GmbH).
DOCUMENT
Background: Adequate self-management skills are of great importance for patients with chronic obstructive pulmonary disease (COPD) to reduce the impact of COPD exacerbations. Using mobile health (mHealth) to support exacerbation-related self-management could be promising in engaging patients in their own health and changing health behaviors. However, there is limited knowledge on how to design mHealth interventions that are effective, meet the needs of end users, and are perceived as useful. By following an iterative user-centered design (UCD) process, an evidence-driven and usable mHealth intervention was developed to enhance exacerbation-related self-management in patients with COPD. Objective: This study aimed to describe in detail the full UCD and development process of an evidence-driven and usable mHealth intervention to enhance exacerbation-related self-management in patients with COPD. Methods: The UCD process consisted of four iterative phases: (1) background analysis and design conceptualization, (2) alpha usability testing, (3) iterative software development, and (4) field usability testing. Patients with COPD, health care providers, COPD experts, designers, software developers, and a behavioral scientist were involved throughout the design and development process. The intervention was developed using the behavior change wheel (BCW), a theoretically based approach for designing behavior change interventions, and logic modeling was used to map out the potential working mechanism of the intervention. Furthermore, the principles of design thinking were used for the creative design of the intervention. Qualitative and quantitative research methods were used throughout the design and development process. Results: The background analysis and design conceptualization phase resulted in final guiding principles for the intervention, a logic model to underpin the working mechanism of the intervention, and design requirements. Usability requirements were obtained from the usability testing phases. The iterative software development resulted in an evidence-driven and usable mHealth intervention—Copilot, a mobile app consisting of a symptom-monitoring module, and a personalized COPD action plan. Conclusions: By following a UCD process, an mHealth intervention was developed that meets the needs and preferences of patients with COPD, is likely to be used by patients with COPD, and has a high potential to be effective in reducing exacerbation impact. This extensive report of the intervention development process contributes to more transparency in the development of complex interventions in health care and can be used by researchers and designers as guidance for the development of future mHealth interventions.
DOCUMENT
Introduction. Despite the high number of inactive patients with COPD, not all inactive patients are referred to physical therapy, unlike recommendations of general practitioner (GP) guidelines. It is likely that GPs take other factors into account, determining a subpopulation that is treated by a physical therapist (PT). The aim of this study is to explore the phenotypic differences between inactive patients treated in GP practice and inactive patients treated in GP practice combined with PT. Additionally this study provides an overview of the phenotype of patients with COPD in PT practice. Methods. In a cross-sectional study, COPD patient characteristics were extracted from questionnaires. Differences regarding perceived health status, degree of airway obstruction, exacerbation frequency, and comorbidity were studied in a subgroup of 290 inactive patients and in all 438 patients. Results. Patients treated in GP practice combined with PT reported higher degree of airway obstruction,more exacerbations, more vascular comorbidity, and lower health status compared to patients who were not referred to and treated by a PT. Conclusion. Unequalpatient phenotypes in different primary care settings have important clinical implications. It can be carefully concluded that other factors, besides the level of inactivity, play a role in referral to PT.
DOCUMENT
Background: Patients with chronic obstructive pulmonary disease (COPD) demonstrate reduced levels of daily physical activity (DPA) compared to healthy controls. This results in a higher risk of hospital admission and shorter survival. Performing regular DPA reduces these risks. Objective: To develop an eHealth intervention that will support patients with COPD to improve or maintain their DPA after pulmonary rehabilitation. Methods: The design process consisted of literature research and the iterative developing and piloting phases of the Medical Research Council (MRC) model for complex clinical interventions and the involvement of end users. Participants were healthy adults and persons with COPD. Results: The mobile phone interface met all the set requirements. Participants found that the app was stimulating and that reaching their DPA goals was rewarding. The mean (SD) scores on a 7-point scale for usability, ease of use, ease of learning, and contentment were 3.8 (1.8), 5.1 (1.1), 6.0 (1.6), and 4.8 (1.3), respectively. The mean (SD) correlation between the mobile phone and a validated accelerometer was 0.88 (0.12) in the final test. The idea of providing their health care professional with their DPA data caused no privacy issues in the participants. Battery life lasted for an entire day with the final version, and readability and comprehensibility of text and colors were favorable. Conclusions: By employing a user-centered design approach, a mobile phone was found to be an adequate and feasible interface for an eHealth intervention. The mobile phone and app are easy to learn and use by patients with COPD. In the final test, the accuracy of the DPA measurement was good. The final version of the eHealth intervention is presently being tested by our group for efficacy in a randomized controlled trial in COPD patients.
LINK
Abstract Background: Integrated disease management with self-management for Chronic Obstructive Pulmonary Disease (COPD) is effective to improve clinical outcomes. eHealth can improve patients’ involvement to be able to accept and maintain a healthier lifestyle. Eventhough there is mixed evidence of the impact of eHealth on quality of life (QoL) in different settings. Aim: The primary aim of the e-Vita-COPD-study was to investigate the effect of use of eHealth patient platforms on disease specific QoL of COPD patients. Methods: We evaluated the impact of an eHealth platform on disease specific QoL measured with the clinical COPD questionnaire (CCQ), including subscales of symptoms, functional state and mental state. Interrupted time series (ITS) design was used to collect CCQ data at multiple time points. Multilevel linear regression modelling was used to compare trends in CCQ before and after the intervention. Results: Of 742 invited COPD patients, 244 signed informed consent. For the analyses, we only included patients who actually used the eHealth platform (n = 123). The decrease of CCQ-symptoms was 0.20% before the intervention and 0.27% after the intervention; this difference in slopes was statistically significant (P = 0.027). The decrease of CCQ-mental was 0.97% before the intervention and after the intervention there was an increase of 0.017%; this difference was statistically significant (P = 0.01). No significant difference was found in the slopes of CCQ (P = 0.12) and CCQ-function (P = 0.11) before and after the intervention. Conclusion: The e-Vita eHealth platform had a potential beneficial impact on the CCQ-symptoms of COPD patients, but not on functional state. The CCQ-mental state remained stable after the intervention, but this was a deterioration compared to the improving situation before the start of the eHealth platform. Therefore, health care providers should be aware that, although symptoms improve, there might be a slight increase in anxiety and depression after introducing an eHealth intervention to support self-management. Trial registration: Our study is registered in the Dutch Trial Register (national registration of clinical trails, mandatory for publication) with number NTR4098 and can be found at http://www.trialregister.nl/trial/3936.
DOCUMENT
Chronic diseases represent a significant burden for the society and health systems; addressing this burden is a key goal of the European Union policy. Health and other professionals are expected to deliver behaviour change support to persons with chronic disease. A skill gap in behaviour change support has been identified, and there is room for improvement. Train4Health is a strategic partnership involving seven European Institutions in five countries, which seeks to improve behaviour change support competencies for the self-management of chronic disease. The project envisages a continuum in behaviour change support education, in which an interprofessional competency framework, relevant for those currently practising, guides the development of a learning outcomes-based curriculum and an educational package for future professionals (today’s undergraduate students).
DOCUMENT