In many regions, governments are motivating increased bicycle ridership by designing new and improving existing bicycle infrastructure. Cycle highways are an effective and cost-efficient type of bicycle-specific infrastructure that are designed to provide a functional connection between places where people work, go to school and live. One important element of developing high quality cycle highways is the development of an effective wayfinding system which allows current, potential, and new users to clearly identify and navigate a bicycle network. The wayfinding design standards used for conventional bicycle infrastructure may not be compatible for cycle highways, which encourage cyclists to travel at relatively higher speeds. This may warrant introducing specific wayfinding signage compatible for this new type of bicycle infrastructure. This study uses qualitative analysis including field observations, ride-along videos, and semi-structured interviews, to assess electrically assisted pedal bicycle (e-bike) users' opinions and experiences with wayfinding signage along a pilot cycle highway route located between Tilburg and Waalwijk in the Netherlands. In the summer of 2018, base-line observations and interviews were administered with twelve e-bike users who were unfamiliar with the route to assess their experiences with conventional signage for cyclists before changes were made to the wayfinding system. Follow-up observations were held in the fall, after the installation of two new pilot wayfinding systems that were specifically designed to accommodate cycle highway users. Initial findings suggest that the changes made to the location, size and clarity of the signage improve cyclists' overall experiences, and that cyclists' perceptions of the built environment are important. Specifically, it became easier for users to navigate the route, their overall travel related stress decreased, and several participants perceived shorter travel times. Policy makers and transportation planners are likely to be interested in the results of this study as they reveal how specific improvements to wayfinding along cycle highways not only help improve navigation, but also positively influence cyclists' overall comfort and stress.
MULTIFILE
This booklet holds a collection of drawings, maps, schemes, collages, artistic impressions etc. which were made by students during an intense design moment in the project (re)CYCLE Limburg, which took place in December 2016. Students of Built Environment, Facility Management, Social Work and Health & Care cooperated in making designs and developing strategies for urban renewal in Kerkrade West (Province of Limburg, the Netherlands). The study focused on the importance of qualitative and shared public spaces. The local community (inhabitants, shopkeepers, entrepreneurs, municipality, housing corporation) was actively engaged by sharing knowledge and information, ideas and opinions. These reflections are part of the Limburg Action Lab (part of the Smart Urban Redesign Research Centre). It engages in research by design on innovative and tactical interventions in public space, that might enhance the identity, sustainability and socio-spatial structure of neighbourhoods.
DOCUMENT
We present an economic impacts model based on direct expenditures for European cycle routes, originally designed in 2009 as part of a study commissioned by the European Parliament. At its request, the study was updated in 2012, including a refined version of our model which takes some limitations of the former model into account. Our main findings are that cycle tourists’ daily spending is comparable to that of other tourists, and that cycle tourism can contribute significantly in particular to rural economies that have not previously enjoyed mainstream tourism development. (European) cycle tourism thus proves to be useful as an (additional) tool for regional rural development. We arrived at a total estimated direct expenditures in Europe of almost €44 billion (€35 billion from day trips and €8.94 billion from overnight trips). We applied the model to the routes of EuroVelo, the European cycle route network which is currently being developed, showing their considerable economic potential of over €7 billion in direct expenditures. Furthermore, cycle tourism has a far lower negative impact on the environment (in terms of carbon dioxide emissions) than other forms of tourism. Cycle tourism is therefore a good example of a low carbon tourism product which could be developed as a major slow travel opportunity across (rural) Europe.
LINK
Over the last couple of years there is a growing interest in the role of the bicycle in Western urban transport systems as an alternative to car use. Cycling not only has positive environmental impacts, but also positive health effects through increased physical activity. From the observation of the Urban Intelligence team that cycling data and information was limited, we have started the development of cycleprint. Cycleprint stands for Cycle Policy Renewal and INnovation by means of tracking Technology with the objective to enable more customer friendly cycle policy.The initial objective of Cycleprint was to translate GPS data into policy relevant insights to enable customer friendly cycle policy. The online toolkit what Cycleprint has become, answers the questions about:-route choice-speeds-delays at intersections -intensities Because of the success of Cycleprint in the Netherlands the range of features is still under development. As a result of the development of Cycleprint the Dutch organized the fietstelweek. In addition to Cycleprint the Urban Intelligence team developed the cyclescan to explore the effects of cycle network enhancement. The project is developed in direct collaboration with the Provincie Noord-Brabant and Metropoolregio Eindhoven to fulfill the ambition to become cycling region of the Netherlands in 2020.
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”
The transition to a circular economy requires innovative digital solutions to extend the lifespan of electrical and electronic appliances (EEA) and reduce the volume of waste generated by this product stream. Digital Product Passports (DPPs) make product and usage information accessible to supply chain partners and serve as a crucial tool for optimising circular strategies. DPP data on performed maintenance, upgrades, (sensor) data on EEA usage, diagnostics and repairs support supply chain actors throughout the product lifecycle in carrying out their circular responsibilities. This project focuses on the application of DPPs in the "Middle-of-Life" phase of EEA products, specifically dishwashers and coffee machines. The central research question is: How can the EEA supply chain design and actively manage a DPP in a way that creates value for all stakeholders in the Middle-of-Life phase and contributes to product life extension and circularity? The applied methodology is based on Design Science Research (DSR) and Co-design, in which manufacturers, repair services, collection partners and DPP solution providers collaborate on a practice-oriented implementation. In co-design sessions, the requirements and functionalities of DPPs are defined based on identified circular roles and related information needs. These are then translated into a DPP "Proof of Concept", which is tested by partners across the electronics value chain. The intended outcome is an implemented and validated DPP concept that unlocks product data, optimises circular processes, and strengthens collaboration within the supply chain. This project contributes to strategic policy agendas on digitalisation and circularity and offers a blueprint for the broader application of DPPs in the EEA sector. The project partners – ATAG Benelux, E-Care, Beekman B.V., Holland Circulair, Eviden, Saxion University of Applied Sciences, and HU University of Applied Sciences Utrecht – combine their expertise to develop a future-proof, scalable and practice-based DPP solution.