Sinds september 2015 is de ‘business rule management wereld’ / ‘decision management wereld’ weer een standaard rijker: The Decision Model and Notation (DMN). De Object Management Group (OMG) heeft deze nieuwe standaard uitgebracht met als doel een standaard taal te creëren om 1) requirements voor beslissingen en 2) de beslissingen zelf te modelleren. De adoptie van DMN heeft een wat lange aanloop gehad, maar begint nu serieuze vormen aan te nemen. Om deze reden brengen wij een vierdelige serie over DMN en het gebruik van DMN uit. In deze introductie, deel 1, gaan we in op de basis van The Decision Model and Notation.
LINK
Sinds september 2015 is de ‘business rule management wereld’ / ‘decision management wereld’ weer een standaard rijker: The Decision Model and Notation (DMN). De Object Management Group (OMG) heeft deze nieuwe standaard uitgebracht met als doel een standaard taal te creëren om 1) requirements voor beslissingen en 2) de beslissingen zelf te modelleren. De adoptie van DMN heeft een wat lange aanloop gehad, maar begint nu serieuze vormen aan te nemen. Om deze reden brengen wij een vierdelige serie over DMN en het gebruik van DMN uit. In dit deel (deel 2) gaan we in op de basis principes die gelden bij het creëren van een DRD.
LINK
Sinds september 2015 is de ‘business rule management wereld’ / ‘decision management wereld’ weer een standaard rijker: The Decision Model and Notation (DMN). De Object Management Group (OMG) heeft deze nieuwe standaard uitgebracht met als doel een standaardtaal te creëren om 1) requirements voor beslissingen en 2) de beslissingen zelf te modelleren. De adoptie van DMN heeft een wat lange aanloop gehad, maar begint nu serieuze vormen aan te nemen. Om deze reden brengen wij een vierdelige serie over DMN en het gebruik van DMN uit. In dit deel (deel 3) wordt er verder gegaan met stap 4. Wat zijn de benodigde feittype om de beslissing te nemen?
LINK
In 2015, the Object Management Group published the Decision Model and Notation with the goal to structure and connect business processes, decisions and underlying business logic. Practice shows that several vendors adopted the DMN standard and (started to) integrate the standard with their tooling. However, practice also shows that there are vendors who (consciously) deviate from the DMN standard while still trying to achieve the goal DMN is set out to reach. This research aims to 1) analyze and benchmark available tooling and their accompanied languages according to the DMN-standard and 2) understand the different approaches to modeling decisions and underlying business logic of these vendor specific languages. We achieved the above by analyzing secondary data. In total, 22 decision modelling tools together with their languages were analyzed. The results of this study reveal six propositions with regards to the adoption of DMN with regards to the sample of tools. These results could be utilized to improve the tools as well as the DMN standard itself to improve adoption. Possible future research directions comprise the improvement of the generalizability of the results by including more tools available and utilizing different methods for the data collection and analysis as well as deeper analysis into the generation of DMN directly from tool-native languages.
DOCUMENT
Accurate modeling of end-users’ decision-making behavior is crucial for validating demand response (DR) policies. However, existing models usually represent the decision-making behavior as an optimization problem, neglecting the impact of human psychology on decisions. In this paper, we propose a Belief-Desire-Intention (BDI) agent model to model end-users’ decision-making under DR. This model has the ability to perceive environmental information, generate different power scheduling plans, and make decisions that align with its own interests. The key modeling capabilities of the proposed model have been validated in a household end-user with flexible loads
DOCUMENT
In case of a major cyber incident, organizations usually rely on external providers of Cyber Incident Response (CIR) services. CIR consultants operate in a dynamic and constantly changing environment in which they must actively engage in information management and problem solving while adapting to complex circumstances. In this challenging environment CIR consultants need to make critical decisions about what to advise clients that are impacted by a major cyber incident. Despite its relevance, CIR decision making is an understudied topic. The objective of this preliminary investigation is therefore to understand what decision-making strategies experienced CIR consultants use during challenging incidents and to offer suggestions for training and decision-aiding. A general understanding of operational decision making under pressure, uncertainty, and high stakes was established by reviewing the body of knowledge known as Naturalistic Decision Making (NDM). The general conclusion of NDM research is that experts usually make adequate decisions based on (fast) recognition of the situation and applying the most obvious (default) response pattern that has worked in similar situations in the past. In exceptional situations, however, this way of recognition-primed decision-making results in suboptimal decisions as experts are likely to miss conflicting cues once the situation is quickly recognized under pressure. Understanding the default response pattern and the rare occasions in which this response pattern could be ineffective is therefore key for improving and aiding cyber incident response decision making. Therefore, we interviewed six experienced CIR consultants and used the critical decision method (CDM) to learn how they made decisions under challenging conditions. The main conclusion is that the default response pattern for CIR consultants during cyber breaches is to reduce uncertainty as much as possible by gathering and investigating data and thus delay decision making about eradication until the investigation is completed. According to the respondents, this strategy usually works well and provides the most assurance that the threat actor can be completely removed from the network. However, the majority of respondents could recall at least one case in which this strategy (in hindsight) resulted in unnecessary theft of data or damage. Interestingly, this finding is strikingly different from other operational decision-making domains such as the military, police and fire service in which there is a general tendency to act rapidly instead of searching for more information. The main advice is that training and decision aiding of (novice) cyber incident responders should be aimed at the following: (a) make cyber incident responders aware of how recognition-primed decision making works; (b) discuss the default response strategy that typically works well in several scenarios; (c) explain the exception and how the exception can be recognized; (d) provide alternative response strategies that work better in exceptional situations.
DOCUMENT
Proper decision-making is one of the most important capabilities of an organization. Therefore, it is important to have a clear understanding and overview of the decisions an organization makes. A means to understanding and modeling decisions is the Decision Model and Notation (DMN) standard published by the Object Management Group in 2015. In this standard, it is possible to design and specify how a decision should be taken. However, DMN lacks elements to specify the actors that fulfil different roles in the decision-making process as well as not taking into account the autonomy of machines. In this paper, we re-address and-present our earlier work [1] that focuses on the construction of a framework that takes into account different roles in the decision-making process, and also includes the extent of the autonomy when machines are involved in the decision-making processes. Yet, we extended our previous research with more detailed discussion of the related literature, running cases, and results, which provides a grounded basis from which further research on the governance of (semi) automated decision-making can be conducted. The contributions of this paper are twofold; 1) a framework that combines both autonomy and separation of concerns aspects for decision-making in practice while 2) the proposed theory forms a grounded argument to enrich the current DMN standard.
DOCUMENT
During the past two decades the implementation and adoption of information technology has rapidly increased. As a consequence the way businesses operate has changed dramatically. For example, the amount of data has grown exponentially. Companies are looking for ways to use this data to add value to their business. This has implications for the manner in which (financial) governance needs to be organized. The main purpose of this study is to obtain insight in the changing role of controllers in order to add value to the business by means of data analytics. To answer the research question a literature study was performed to establish a theoretical foundation concerning data analytics and its potential use. Second, nineteen interviews were conducted with controllers, data scientists and academics in the financial domain. Thirdly, a focus group with experts was organized in which additional data were gathered. Based on the literature study and the participants responses it is clear that the challenge of the data explosion consist of converting data into information, knowledge and meaningful insights to support decision-making processes. Performing data analyses enables the controller to support rational decision making to complement the intuitive decision making by (senior) management. In this way, the controller has the opportunity to be in the lead of the information provision within an organization. However, controllers need to have more advanced data science and statistic competences to be able to provide management with effective analysis. Specifically, we found that an important skill regarding statistics is the visualization and communication of statistical analysis. This is needed for controllers in order to grow in their role as business partner..
DOCUMENT
Objective: To construct the underlying value structure of shared decision making (SDM) models. Method: We included previously identified SDM models (n = 40) and 15 additional ones. Using a thematic analysis, we coded the data using Schwartz’s value theory to define values in SDM and to investigate value relations. Results: We identified and defined eight values and developed three themes based on their relations: shared control, a safe and supportive environment, and decisions tailored to patients. We constructed a value structure based on the value relations and themes: the interplay of healthcare professionals’ (HCPs) and patients’ skills [Achievement], support for a patient [Benevolence], and a good relationship between HCP and patient [Security] all facilitate patients’ autonomy [Self-Direction]. These values enable a more balanced relationship between HCP and patient and tailored decision making [Universalism]. Conclusion: SDM can be realized by an interplay of values. The values Benevolence and Security deserve more explicit attention, and may especially increase vulnerable patients’ Self-Direction. Practice implications: This value structure enables a comparison of values underlying SDM with those of specific populations, facilitating the incorporation of patients’ values into treatment decision making. It may also inform the development of SDM measures, interventions, education programs, and HCPs when practicing.
DOCUMENT
Analyzing historical decision-related data can help support actual operational decision-making processes. Decision mining can be employed for such analysis. This paper proposes the Decision Discovery Framework (DDF) designed to develop, adapt, or select a decision discovery algorithm by outlining specific guidelines for input data usage, classifier handling, and decision model representation. This framework incorporates the use of Decision Model and Notation (DMN) for enhanced comprehensibility and normalization to simplify decision tables. The framework’s efficacy was tested by adapting the C4.5 algorithm to the DM45 algorithm. The proposed adaptations include (1) the utilization of a decision log, (2) ensure an unpruned decision tree, (3) the generation DMN, and (4) normalize decision table. Future research can focus on supporting on practitioners in modeling decisions, ensuring their decision-making is compliant, and suggesting improvements to the modeled decisions. Another future research direction is to explore the ability to process unstructured data as input for the discovery of decisions.
MULTIFILE