Walking meetings are a promising way to reduce unhealthy sedentary behavior at the office. Some aspects of walking meetings are however hard to assess using traditional research approaches that do not account well for the embodied experience of walking meetings. We conducted a series of 16 bodystorming sessions, featuring unusual walking meeting situations to engage participants (N=45) in a reflective experience. After each bodystorming, participants completed three tasks: a body map, an empathy map, and a rating of workload using the NASA-TLX scale. These embodied explorations provide insights on key themes related to walking meetings: material and tools, physical and mental demand, connection with the environment, social dynamics, and privacy. We discuss the role of technology and opportunities for technology-mediated walking meetings. We draw implications for the design of walking meeting technologies or services to account for embodied experiences, and the individual, social, and environmental factors at play.
DOCUMENT
Abstract: Disability is associated with lower quality of life and premature death in older people. Therefore, prevention and intervention targeting older people living with a disability is important. Frailty can be considered a major predictor of disability. In this study, we aimed to develop nomograms with items of the Tilburg Frailty Indicator (TFI) as predictors by using cross-sectional and longitudinal data (follow-up of five and nine years), focusing on the prediction of total disability, disability in activities of daily living (ADL), and disability in instrumental activities of daily living (IADL). At baseline, 479 Dutch community-dwelling people aged 75 years participated. They completed a questionnaire that included the TFI and the Groningen Activity Restriction Scale to assess the three disability variables. We showed that the TFI items scored different points, especially over time. Therefore, not every item was equally important in predicting disability. ‘Difficulty in walking’ and ‘unexplained weight loss’ appeared to be important predictors of disability. Healthcare professionals need to focus on these two items to prevent disability. We also conclude that the points given to frailty items differed between total, ADL, and IADL disability and also differed regarding years of follow-up. Creating one monogram that does justice to this seems impossible.
DOCUMENT
BACKGROUND: Hospital stays are associated with high levels of sedentary behavior and physical inactivity. To objectively investigate physical behavior of hospitalized patients, these is a need for valid measurement instruments. The aim of this study was to assess the criterion validity of three accelerometers to measure lying, sitting, standing and walking. METHODS: This cross-sectional study was performed in a university hospital. Participants carried out several mobility tasks according to a structured protocol while wearing three accelerometers (ActiGraph GT9X Link, Activ8 Professional and Dynaport MoveMonitor). The participants were guided through the protocol by a test leader and were recorded on video to serve as reference. Sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) were determined for the categories lying, sitting, standing and walking. RESULTS: In total 12 subjects were included with a mean age of 49.5 (SD 21.5) years and a mean body mass index of 23.8 kg/m2 (SD 2.4). The ActiGraph GT9X Link showed an excellent sensitivity (90%) and PPV (98%) for walking, but a poor sensitivity for sitting and standing (57% and 53%), and a poor PPV (43%) for sitting. The Activ8 Professional showed an excellent sensitivity for sitting and walking (95% and 93%), excellent PPV (98%) for walking, but no sensitivity (0%) and PPV (0%) for lying. The Dynaport MoveMonitor showed an excellent sensitivity for sitting (94%), excellent PPV for lying and walking (100% and 99%), but a poor sensitivity (13%) and PPV (19%) for standing. CONCLUSIONS: The validity outcomes for the categories lying, sitting, standing and walking vary between the investigated accelerometers. All three accelerometers scored good to excellent in identifying walking. None of the accelerometers were able to identify all categories validly.
DOCUMENT
Objective. Clinicians may use implicit or explicit motor learning approaches to facilitatemotor learning of patients with stroke. Implicit motor learning approaches have shown promising results in healthy populations. The purpose of this study was to assess whether an implicit motor learning walking intervention is more effective compared with an explicit motor learning walking intervention delivered at home regarding walking speed in people after stroke in the chronic phase of recovery. Methods. This randomized, controlled, single-blind trial was conducted in the home environment. The 79 participants, who were in the chronic phase after stroke (age = 66.4 [SD = 11.0] years; time poststroke = 70.1 [SD = 64.3] months; walking speed = 0.7 [SD = 0.3] m/s; Berg Balance Scale score = 44.5 [SD = 9.5]), were randomly assigned to an implicit (n = 38) or explicit (n = 41) group. Analogy learning was used as the implicit motor learning walking intervention, whereas the explicit motor learning walking intervention consisted of detailed verbal instructions. Both groups received 9 training sessions (30 minutes each), for a period of 3 weeks, targeted at improving quality of walking. The primary outcome was walking speed measured by the 10-MeterWalk Test at a comfortable walking pace. Outcomes were assessed at baseline, immediately after intervention, and 1 month postintervention. Results. No statistically or clinically relevant differences between groups were obtained postintervention (between-group difference was estimated at 0.02 m/s [95% CI = −0.04 to 0.08] and at follow-up (between-group difference estimated at −0.02 m/s [95% CI = −0.09 to 0.05]). Conclusion. Implicit motor learning was not superior to explicit motor learning to improve walking speed in people after stroke in the chronic phase of recovery. Impact. To our knowledge, this is the first study to examine the effects of implicit compared with explicit motor learning on a functional task in people after stroke. Results indicate that physical therapists can use (tailored) implicit and explicit motor learning strategies to improve walking speed in people after stroke who are in the chronic phase of recovery.
DOCUMENT
Objective: To evaluate the preliminary effectiveness of a goal-directed movement intervention using a movement sensor on physical activity of hospitalized patients. Design: Prospective, pre-post study. Setting: A university medical center. Participants: Patients admitted to the pulmonology and nephrology/gastro-enterology wards. Intervention: The movement intervention consisted of (1) self-monitoring of patients' physical activity, (2) setting daily movement goals and (3) posters with exercises and walking routes. Physical activity was measured with a movement sensor (PAM AM400) which measures active minutes per day. Main measures: Primary outcome was the mean difference in active minutes per day pre- and post-implementation. Secondary outcomes were length of stay, discharge destination, immobility-related complications, physical functioning, perceived difficulty to move, 30-day readmission, 30-day mortality and the adoption of the intervention. Results: A total of 61 patients was included pre-implementation, and a total of 56 patients was included post-implementation. Pre-implementation, patients were active 38 ± 21 minutes (mean ± SD) per day, and post-implementation 50 ± 31 minutes per day (Δ12, P = 0.031). Perceived difficulty to move decreased from 3.4 to 1.7 (0-10) (Δ1.7, P = 0.008). No significant differences were found in other secondary outcomes. Conclusions: The goal-directed movement intervention seems to increase physical activity levels during hospitalization. Therefore, this intervention might be useful for other hospitals to stimulate inpatient physical activity.
DOCUMENT
Objective: To predict mortality with the Tilburg Frailty Indicator (TFI) in a sample of community-dwelling older people, using a follow-up of 7 years. Setting and Participants: 479 Dutch community-dwelling people aged 75 years or older. Measurements: The TFI, a self-report questionnaire, was used to collect data about total, physical, psychological, and social frailty. The municipality of Roosendaal (a town in the Netherlands) provided the mortality dates. Conclusions and Implications: This study has shown the predictive validity of the TFI for mortality in community-dwelling older people. Our study demonstrated that physical and psychological frailty predicted mortality. Of the individual TFI components, difficulty in walking consistently predicted mortality. For identifying frailty, using the integral instrument is recommended because total, physical, psychological, and social frailty and its components have proven their value in predicting adverse outcomes of frailty, for example, increase in health care use and a lower quality of life.
MULTIFILE
Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
DOCUMENT
Background/Aims: Analogy learning, a motor learning strategy that uses biomechanical metaphors to chunk together explicit rules of a to-be-learned motor skill. This proof-of-concept study aims to establish the feasibility and potential benefits of analogy learning in enhancing stride length regulation in people with Parkinson’s. Methods: Walking performance of thirteen individuals with Parkinson’s was analysed using a Codamotion analysis system. An analogy instruction; “following footprints in the sand” was practiced over 8 walking trials. Single- and dual- (motor and cognitive) task conditions were measured before training, immediately after training and 4-weeks post training. Finally, an evaluation form was completed to examine the interventions feasibility. Findings: Data from 12 individuals (6 females and 6 males, mean age 70, Hoehn and Yahr I-III) were analysed, one person withdrew due to back problems. In the single task condition, statistically and clinically relevant improvements were obtained. A positive trend towards reducing dual task costs after the intervention was demonstrated, supporting the relatively implicit nature of the analogy. Participants reported that the analogy was simple to use and became easier over time. Conclusions: Analogy learning is a feasible and potentially implicit (i.e. reduced working memory demands) intervention to facilitate walking performance in people with Parkinson’s.
DOCUMENT
The prevention and diagnosis of frailty syndrome (FS) in cardiac patients requires innovative systems to support medical personnel, patient adherence, and self-care behavior. To do so, modern medicine uses a supervised machine learning approach (ML) to study the psychosocial domains of frailty in cardiac patients with heart failure (HF). This study aimed to determine the absolute and relative diagnostic importance of the individual components of the Tilburg Frailty Indicator (TFI) questionnaire in patients with HF. An exploratory analysis was performed using machine learning algorithms and the permutation method to determine the absolute importance of frailty components in HF. Based on the TFI data, which contain physical and psychosocial components, machine learning models were built based on three algorithms: a decision tree, a random decision forest, and the AdaBoost Models classifier. The absolute weights were used to make pairwise comparisons between the variables and obtain relative diagnostic importance. The analysis of HF patients’ responses showed that the psychological variable TFI20 diagnosing low mood was more diagnostically important than the variables from the physical domain: lack of strength in the hands and physical fatigue. The psychological variable TFI21 linked with agitation and irritability was diagnostically more important than all three physical variables considered: walking difficulties, lack of hand strength, and physical fatigue. In the case of the two remaining variables from the psychological domain (TFI19, TFI22), and for all variables from the social domain, the results do not allow for the rejection of the null hypothesis. From a long-term perspective, the ML based frailty approach can support healthcare professionals, including psychologists and social workers, in drawing their attention to the nonphysical origins of HF.
DOCUMENT
Background: A significant part of neurological rehabilitation focuses on facilitating the learning of motor skills. Training can adopt either (more) explicit or (more) implicit forms of motor learning. Gait is one of the most practiced motor skills within rehabilitation in people after stroke because it is an important criterion for discharge and requirement for functioning at home. Objective: The aim of this study was to describe the design of a randomized controlled study assessing the effects of implicit motor learning compared with the explicit motor learning in gait rehabilitation of people suffering from stroke. Methods: The study adopts a randomized, controlled, single-blinded study design. People after stroke will be eligible for participation when they are in the chronic stage of recovery (>6 months after stroke), would like to improve walking performance, have a slow walking speed (<1 m/s), can communicate in Dutch, and complete a 3-stage command. People will be excluded if they cannot walk a minimum of 10 m or have other additional impairments that (severely) influence gait. Participants will receive 9 gait-training sessions over a 3-week period and will be randomly allocated to an implicit or explicit group. Therapists are aware of the intervention they provide, and the assessors are blind to the intervention participants receive. Outcome will be assessed at baseline (T0), directly after the intervention (T1), and after 1 month (T2). The primary outcome parameter is walking velocity. Walking performance will be assessed with the 10-meter walking test, Dynamic Gait Index, and while performing a secondary task (dual task). Self-reported measures are the Movement Specific Reinvestment Scale, verbal protocol, Stroke and Aphasia Quality of Life Scale, and the Global Perceived Effect scale. A process evaluation will take place to identify how the therapy was perceived and identify factors that may have influenced the effectiveness of the intervention. Repeated measures analyses will be conducted to determine significant and clinical relevant differences between groups and over time. Results: Data collection is currently ongoing and results are expected in 2019. Conclusions: The relevance of the study as well as the advantages and disadvantages of several aspects of the chosen design are discussed, for example, the personalized approach and choice of measurements.
DOCUMENT