This paper explores how so-called ‘Web3’ blockchain projects are materially and socially constituted. A blockchain is an append-only distributed database. The technology is being hyped as applicable for a whole range of industries, social service provisions, and as a fix for economic disparities in communities left behind by mainstream financial systems. Drawing on case studies from our ongoing research we explain how, despite being virtual, Web3 projects are dependent on clearly defined spaces of production from which they derive their speculative value. We conceptualise this relationship as Crypto/Space, where space and blockchain software are mutually constituted. We consider how Crypto/Spaces are produced in three ways: 1) how project developers are adopting a parasitic relationship with host locations to appropriate energy, infrastructure, and local resources; 2) how projects enable ‘virtual land grabs’ where developers are engaging in land acquisitions, and associated displacement of local people, with no real intention to use the land for the declared purpose; and 3) how blockchain technology and speculative finance imaginaries are inspiring new anarcho-capitalist crypto-utopian ‘Exit zones’, often in the Global South. Far from being a zero-sum virtual game world, we argue that cryptocurrency projects are parasitic, often requiring predation on poor and otherwise marginalised communities to appropriate resources, onboard new users and enable favourable regulation.
Currently EVs constitute only 1% of all vehicles on the road. We are at the eve of the large scale introduction of EVs. Large scale introduction requires a significant growth in charging infrastructure. In an urban context, in which many rely on on-street charging facilities, policy makers deal with a large number of concerns. Policy makers are uncertain about which charging deployment strategy to follow. This paper presents results from simulating different strategies for charging infrastructure roll to facilitate a large scale introduction of EVs using agent based simulation. In contrast to other models, the model uses observed charging patterns from EVs instead of travel patterns of fossil fuelled cars. The simulation incorporates different user types (Inhabitants, visitors, taxis and sharing) to model the complexity of charging in an urban environment. Different scenarios are explored along the lines of the type of charging infrastructure (level 2, clustered level 2, fast charging), the intensity of rollout (EV to Charging point ratio) and adoption rates. The simulation measures both the success rate and the additional miles cruising for a charging station. Results shows that scaling effects in charging infrastructure exist allowing for more efficient use of the infrastructure at a larger size.
Laboratory study using a repeated measures design. The aim of this study was to determine if ankle proprioception is targeted in exercises on unstable surfaces. Lateral ankle sprain (LAS) has recurrence rates over 70%, which are believed to be due to a reduced accuracy of proprioceptive signals from the ankle. Proprioceptive exercises in rehabilitation of LAS mostly consist of balancing activities on an unstable surface. The methods include 100 healthy adults stood barefoot on a solid surface and a foam pad over a force plate, with occluded vision. Mechanical vibration was used to stimulate proprioceptive output of muscle spindles of triceps surae and lumbar paraspinal musculature. Each trial lasted for 60 s; vibration was applied from the 15th till the 30th second. Changes in mean velocity and mean position of the center of pressure (CoP) as a result of muscle vibration were calculated. Results show that on foam, the effect of triceps surae vibration on mean CoP velocity was significantly smaller than on a solid surface, while for paraspinal musculature vibration the effect was bigger on foam than on solid surface. Similar effects were seen for mean CoP displacement as outcome. Exercises on unstable surfaces appear not to target peripheral ankle proprioception. Exercises on an unstable surface may challenge the capacity of the central nervous system to shift the weighting of sources of proprioceptive signals on balance.
LINK