A replacement of cars with conventional internal combustion engines (ICEs) by electric vehicles (EVs) is seen by many as a means to improve local air quality, reduce dependence on fossil fuels and CO2 emissions. The market for EV is slowly developing with a growing number of (subsidized) manufacturers offering EV models in different market segments to (subsidized) car owners. The number of EVs is still small in most countries, but policymakers and manufacturers see partial or even full replacement of ICEs by EVs as realistic in the coming decade. EV engines are powered by rechargeable lithium-ion batteries. Li-ion is produced from precursors, either liquid (brine metal salt) or solid (hard rocks). Lithium mining is still concentrated in a few countries. Lithium is used for batteries, ceramics, grease and medicine. This reliance comes at a cost, as conventional lithium mining creates several externalities. The following main question will be addressed: How to source a required volume of lithium in a way that reduces the environmental and social-economic impact of mining this resource? To address this question, we will use a combination of relevant literature and a local case study supported by a model-based estimation. The focus is on the Netherlands, an EV user country, but the approach is generic.
MULTIFILE
The increased adoption of electric vehicles worldwide is largely caused by the uptake of private electric cars. In parallel other segments such as busses, city logistics and taxis, are increasingly becoming electrified. Amsterdam is an interesting case, as the municipality and the taxi sector have signed a voluntary agreement to realise a full electric taxi fleet by 2025. This paper investigates the results of a survey that was distributed amongst 3000 taxi drivers to examine perceptions and attitudes on the municipal charging incentives as well as taxi ride characteristics.
MULTIFILE
In this study we developed models in order to predict the need for public charging points. These models give municipalities an insight into various environmental and consumer related factors that determine the need for public charging points for electric vehicles in the neighbourhood. These factors include, amongst others, the average gross monthly income of households in a certain neighbourhood and the overall number of cars in a certain neighbourhood. On the basis of the models it turns out, among other factors, that neighbourhoods with households with a relatively high average gross monthly income, and a relatively high number of cars, need a relatively large number of public charging points for electric vehicles.
DOCUMENT
This paper analyses the effect of two new developments: electrification and ‘free floating’ car sharing and their impact on public space. Contrary to station based shared cars, free floating cars do not have dedicated parking or charging stations. They therefore park at public parking spots and utilize public charging stations. A proper network of public charging stations is therefore required in order to keep the free floating fleet up and running. As more municipalities are considering the introduction of an electric free floating car sharing system, the outline of such a public charging network becomes a critical piece of information. The objective of this paper is to create insights that can optimize charging infrastructure for free floating shared cars, by presenting three analyses. First, a business area analysis shows an insight into which business areas are of interest to such a system. Secondly, the parking and charging behaviour of the vehicles is further examined. The third option looks deeper into the locations and their success factors. Finally, the results of the analysis of the city of Amsterdam are used to model the city of The Hague and the impact that a free floating electric car sharing system might have on the city and which areas are the white spots that need to be filled in.
DOCUMENT
This toolkit, originating from the research group Psychology for Sustainable Cities, Amsterdam University of Applied Sciences (AUAS), contains materials that help to promote behavioural change in relation to electric shared transport based in onstreet e-Mobility hubs (eHUBs). Behavioural knowledge is an essential ingredient for the successful implementation of eHUBs. Because behaviour is very dependent on the target group’s capabilities and motivation and on the social and physical context in which behaviour takes place, the research group has developed materials that municipalities can use to design a tailor-made eHUBs promotion intervention that suits their own situation. Therefore, practical examples and insights from earlier research are shared with regard to stimulating the use of eHUBs.
DOCUMENT
Densely populated areas are major sources of air, soil and water pollution. Agriculture, manufacturing, consumer households and road traffic all have their share. This is particularly true for the country featured in this paper: the Netherlands. Continuous pollution of the air and soil manifests itself as acification, decalcification and eutrofication. Biodiversity becomes lower and lower in nature areas. Biological farms are also under threat. In case of mobility, local air pollution may have a huge health impact. Effective policy is called for, after high courts blocked construction projects, because of foreseen building- and transport-related NOx emissions. EU law makers are after Dutch governments, because these favoured economics and politics over environmental and liveability concerns. But, people in the Netherlands are strongly divided. The latest provincial elections were dominated by environmental concerns, next to many socio-economic issues. NOx and CO2 emissions by passenger cars are in focus. Technical means and increasing fuel economy norms strongly reduced NOx emissions to a still too high level. A larger number of cars neutralized a technological reduction of CO2 emissions. The question is: What would be the impact of a drastic mandatory reduction in CO2, NOx, and PM10 emissions on car ownership and use in the Netherlands? The authors used literature, scenario analysis and simulation modelling to answer this question. Electric mobility could remove these emissions. Its full impact will only be achieved if the grid-mix, which is still dominated by fossil fuels, becomes green(er), which is a gradual, long-term, process. EVs compete with other consumers of electricity, as many other activities, such as heating, are also electrifying. With the current grid-mix, it is inevitable that the number of km per vehicle per year is reduced to reach the scenario targets (−25% resp. −50% CO2 emissions by cars). This calls for an individual mobility budget per car user.
LINK
Within the FREVUE project 80 fully electric freight vehicles have been deployed. It showed that city logistics operations can be performed by electric freight vehicles, but that at the moment the high vehicle purchasing costs are still a barrier for large scale utilisation of electric freight vehicles for logistics operations. Only for small EFVs (lighter than 3.5 tons) a short term feasible business case is possible. For the larger vans and rigid trucks, a feasible business case is not yet possible from an operator’s perspective, often not even with subsidies. Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved
DOCUMENT
Residential public charging points are shared by multiple electric vehicle drivers, often neighbours. Therefore, charging behaviour is embedded in a social context. Behaviours that affect, or are influenced by, other publiccharging point users have been sparsely studied and lack an overarching and comprehensive definition. Consequently, very few measures are applied in practice to influence charging behaviour. We aim to classify and define the social dimension of charging behaviour from a social-psychological perspective and, using a behaviour change framework, identify and analyse the measures to influence this behaviour. We interviewed 15 experts onresidential public charging infrastructure in the Netherlands. We identified 17 charging behaviours rooted in interpersonal interactions between individuals and interactions between individuals and technology. These behaviours can be categorised into prosocial and antisocial charging behaviours. Prosocial charging behaviour provides or enhances the opportunity for other users to charge their vehicle at the public charging point, for instance by charging only when necessary. Antisocial charging behaviour prevents or diminishes this opportunity, for instance by occupying the charging point after charging, intentionally or unintentionally. We thenidentified 23 measures to influence antisocial and prosocial charging behaviours. These measures can influence behaviour through human–technology interaction, such as providing charging etiquettes to new electric vehicle drivers or charging idle fees, and interpersonal interaction, such as social pressure from other charging point users or facilitating social interactions to exchange requests. Our approach advocates for more attention to the social dimension of charging behaviour.
DOCUMENT
At this moment, charging your electric vehicle is common good, however smart charging is still a novelty in the developing phase with many unknowns. A smart charging system monitors, manages and restricts the charging process to optimize energy consumption. The need for, and advantages of smart charging electric vehicles are clear cut from the perspective of the government, energy suppliers and sustainability goals. But what about the advantages and disadvantages for the people who drive electric cars? What opportunities are there to support the goals of the user to make smart charging desirable for them? By means of qualitative Co-design methods the underlying motives of early adaptors for joining a smart charging service were uncovered. This was done by first sensitizing the user about their current and past encounters with smart charging to make them more aware of their everyday experiences. This was followed by another generative method, journey mapping and in-depth interviews to uncover the core values that drove them to participate in a smart charging system. Finally, during two co-design sessions, the participants formed groups in which they were challenged to design the future of smart charging guided by their core values. The three main findings are as follows. Firstly, participants are looking for ways to make their sustainable behaviour visible and measurable for themselves. For example, the money they saved by using the smart charging system was often used as a scoreboard, more than it was about theactual money. Secondly, they were more willing to participate in smart charging and discharging (sending energy from their vehicle back to the grid) if it had a direct positive effect on someone close to them. For example, a retiree stated that he was more than willing to share the energy of his car with a neighbouring family in which both young parents work, making them unable to charge their vehicles at times when renewable energy is available in abundance. The third and last finding is interrelated with this, it is about setting the right example. The early adopters want to show people close to them that they are making an effort to do the right thing. This is known as the law of proximity and is well illustrated by a participant that bought a second-hand, first-generation Nissan Leaf with a range of just 80 km in the summer and even less in winter. It isn’t about buying the best or most convenient car but about showing the children that sometimes it takes effort to do the right thing. These results suggest that there are clear opportunities for suppliers of smart EV charging services to make it more desirable for users, with other incentives than the now commonly used method of saving money. The main takeaway is that early adopters have a desire for their sustainable behaviour to be more visible and tangible for themselves and their social environment. The results have been translated into preliminary design proposals in which the law of proximity is applied.
DOCUMENT
This paper explores current and potential future use of fast charging stations for electric passenger vehicles. The aim of the paper is to analyse current charging patterns at fast charging stations and the role of fast charging among different charging options. These patterns are explored along the lines of the technical capabilities of the vehicles and it is found that with increasing battery capacity the need for fast charging decreases. However, for those vehicles with large charging capacities there are indications that fast charging is perceived as more convenient as these are used more often. Such results indicate a larger share for fast charging if charging capacities increase in the future. Results from a spatial analysis show that most fast charging is done at a considerable distance from home, suggesting mostly ‘on the road’ charging sessions. Some fast charging sessions are relatively close to home, especially for those without private home charging access. This shows some future potential for fast charging in cities with many on-street parking facilities.
DOCUMENT