The government of Ukraine has adopted the Renewable Energy Directive (RED) with clear goals and a roadmap to facilitate its energy transition towards renewable sources. This is done because of both climate concerns as well as reasons related to Ukraine’s foreign policy which led the government to decide that Ukraine should work more on its own energy independence. Currently the percentage of renewable energy sources in Ukraine is among the lowest of the entire Europe and there is only slow development in terms of the growth of the sector, even though there is a lot of available biomass, given the large and flat surface of the country with a well-developed agricultural sector. As in most countries in the world, there is a quite intensive and well-developed debate in Ukraine about the energy sector, energy usage and the necessary transition towards more renewable types of energy. One of the consequences of it is that Ukraine is one of the partner countries in the Paris agreement and committed itself to reducing the amount of greenhouse gas emissions in the future. That means that a transformation towards renewable energy is needed, even though currently in Ukraine only a low percentage of energy is generated by sustainable sources. The general picture is that in Ukraine the development of the renewable energy sector is going not as fast as could have been. In other words, there are several barriers present that hinder the energy transition. One of the issues behind such a barrier may be a limited access to technology, or problems with legislation or other issues which may be unknown so far, but certainly relevant for foreign investors. The Ukrainian government adopted the so-called Renewable Energy Directive (RED), set goals for the energy transition and support the transition itself. In some areas progress was made, for example in the growing number of biomass fired boilers, but still Ukraine remains one of the European countries with the lowest percentage of renewable energy production. Therefore, in order to identify currently existing barriers and help to find possible applications of new technologies in Ukraine, the Dutch Enterprise Agency (Rijksdienst voor Ondernemerschap) commissioned this study. It was done within the framework of the Partners in Business on Bioenergy program. The focus of this study is on analysing the renewable energy sector, with special attention for biomass, in the form of biomass-based heating and biomass for biofuels. Of course, other parts of the renewable energy sector such as solar and wind energy are also taken into consideration. The second part consists of a case study to determine the business case for direct processing of sugar beets with Betaprocess as a possible application of biomass to biofuel production in Ukraine. The third study is aiming at determining the amount of biomass that can safely be taken from the fields, without negatively affecting the fertility of the soil. These sub-studies mentioned in the previous paragraph offer a better understanding of the renewable energy market in general and biomass/biofuel applications in particular. This study sheds light on several important questions that entrepreneurs and/or other foreign investors may have about investing in Ukraine. Even though it is well-known that doing business in Ukraine is challenging, it is also very important to have a clear picture of the opportunities that this country offers, within the limits that nature sets, in order to avoid negative consequences like soil degradation. The objective of this report is to find out about which opportunities and barriers exist in the Ukrainian transition towards renewable energy generation, to calculate the profitability of new biomass-processing technologies as well as finding out limitations of biomass usage.
MULTIFILE
Uit de samenvatting: "Sinds medio 2017 is het Nationaal Lectorenplatform Urban Energy actief. De betrokken lectoren beogen het praktijkgericht onderzoek rond de gebouwde omgeving op hogescholen te verbinden en te stroomlijnen. Dit doen ze teneinde bij te dragen aan de energietransitie: met duurzame bronnen voorzien in onze energievoorziening. Een belangrijk instrument om de expertise van de lectoren te delen is een digitale onderzoekskaart, die beschikbaar is via: http://www.nlurbanenergy.nl. Daarnaast is er behoefte aan meer inzicht als het gaat om termen als vraagarticulatie en onderzoekssamenwerking. Meer precies wilden we achterhalen wat de behoefte is van het mkb aan praktijkgericht onderzoek van hogescholen in het domein Urban Energy. Daartoe hebben we een verkennende studie uitgevoerd naar praktijkgericht onderzoek binnen het domein Urban Energy. Hiervoor interviewden we de betrokken lectoren en ondernemers uit het innovatief MKB. Daarnaast maakten we gebruik van een enquête die we via verschillende kanalen onder de aandacht brachten bij het innovatief mkb."
DOCUMENT
This report consists of two parts and describes the highlights of the investigations carried out in the Province of Groningen as part of the Right Project to understand the Regional Innovation Ecosystem in the region. The first part is focusses on the socio-economic and R&D profile (Part 1A) and a SWOT analysis on salient aspects related to Regional Innovation Ecosystems (Part 1B). The second part (Part 2) focuses on the SME innovation capacity and needs, and presents the highlights of 6 interviews with SMEs in the region. The RIGHT project, an Interreg North Sea Program, will contribute to territorial growth in the North Sea Region by connecting smart specialisation strategies to human capital and the skills of the workforce by defining existing and potential regional growth sectors and sub-sectors.
LINK
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
The energy management systems industry in the built environment is currently an important topic. Buildings use about 40% of the total global energy worldwide. Therefore, the energy management system’s sector is one of the most influential sectors to realize changes and transformation of energy use. New data science technologies used in building energy management systems might not only bring many technical challenges, but also they raise significant educational challenges for professionals who work in the field of energy management systems. Learning and educational issues are mainly due to the transformation of professional practices and networks, emerging technologies, and a big shift in how people work, communicate, and share their knowledge across the professional and academic sectors. In this study, we have investigated three different companies active in the building services sector to identify the main motivation and barriers to knowledge adoption, transfer, and exchange between different professionals in the energy management sector and explore the technologies that have been used in this field using the boundary-crossing framework. The results of our study show the importance of understanding professional learning networks in the building services sector. Additionally, the role of learning culture, incentive structure, and technologies behind the educational system of each organization are explained. Boundary-crossing helps to analyze the barriers and challenges in the educational setting and how new educational technologies can be embedded. Based on our results, future studies with a bigger sample and deeper analysis of technologies are needed to have a better understanding of current educational problems.
DOCUMENT
Energy efficiency has gained a lot of prominence in recent debates on urban sustainability and housing policy due to its potential consequences for climate change. At the local, national and also international level, there are numerous initiatives to promote energy savings and the use of renewable energy to reduce the environmental burden. There is a lot of literature on energy saving and other forms of energy efficiency in housing. However, how to bring this forward in the management of individual housing organisations is not often internationally explored. An international research project has been carried out to find the answers on management questions of housing organisations regarding energy efficiency. Eleven countries have been included in this study: Germany, the United Kingdom (more specifically: England), France, Sweden, Denmark, the Netherlands, Switzerland, Slovenia, the Czech Republic, Austria and Canada. The state of the art of energy efficiency in the housing management of non-profit housing organisations and the embedding of energy efficiency to improve the quality and performance of housing in management practices have been investigated, with a focus on how policy ambitions about energy efficiency are brought forward in investment decisions at the estate level. This paper presents the conclusions of the research
DOCUMENT
Energiebeheer gericht aanpakken, Het analyseren van doelstellingen, resultaten en impacts van energie- en broeikasgasbeheersprogramma’s in bedrijven (met een samenvatting in het Nederlands): De wereldwijde uitstoot van broeikasgassen moet drastisch worden teruggebracht om de mondiale stijging van de temperatuur tot het relatief veilige niveau van maximaal 2 graden Celsius te beperken. In de komende decennia zal de verbetering van de energie-efficiëntie de belangrijkste strategie zijn voor het verminderen van de energiegerelateerde uitstoot van broeikasgassen. Hoewel er een enorm potentieel is voor verbetering van de energie-efficiëntie, wordt een groot deel daarvan nog niet benut. Dit wordt veroorzaakt door diverse investeringsbarrières die de invoering van maatregelen voor energie-efficiëntie verbetering verhinderen. De invoering van energiemanagement wordt vaak beschouwd als een manier om dergelijke barrières voor energiebesparing te overwinnen. De invoering van energiemanagement in bedrijven kan worden gestimuleerd door de introductie van programma's voor energie-efficiëntie verbetering en vermindering van de uitstoot van broeikasgassen. Deze programma's zijn vaak een combinatie van verschillende elementen zoals verplichtingen voor energiemanagement; (ambitieuze) doelstellingen voor energiebesparing of beperking van de uitstoot van broeikasgassen; de beschikbaarheid van regelingen voor stimulering, ondersteuning en naleving; en andere verplichtingen, zoals openbare rapportages, certificering en verificatie. Tot nu toe is er echter beperkt inzicht in het proces van het formuleren van ambitieuze doelstellingen voor energie-efficiëntie verbetering of het terugdringen van de uitstoot van broeikasgassen binnen deze programma's, in de gevolgen van de invoering van dergelijke programma's op de verbetering van het energiemanagement, en in de impact van deze programma's op energiebesparing of de vermindering van de uitstoot van broeikasgassen. De centrale onderzoeksvraag van dit proefschrift is als volgt geformuleerd: "Wat is de impact van energie- en broeikasgasmanagement programma’s op het verbeteren van het energiemanagement in de praktijk, het versnellen van de energieefficiëntie verbetering en het beperken van de uitstoot van broeikasgassen in bedrijven?".
DOCUMENT
This article describes a method for promoting sustainable business practices in the hospitality sector and focusses on energy usage in hotels. It raises questions about the actual impact of eco-labels on actual environmental performance.
DOCUMENT
The shortage for ICT personal in the EU is large and expected to increase. The aim of this research is to contribute to a better understanding of the roles and competences needed, so that education curricula can be better aligned to evolving market demand by answering the research question: Which competence gaps do we need to bridge in order to meet the future need for sufficiently qualified personnel in the EU Software sector? In this research, a mixed method approach was executed in twelve European countries, to map the current and future needs for competences in the EU. The analyses shows changes in demand regarding technical skills, e.g. low-code and a stronger focus on soft skills like communication and critical thinking. Besides this, the research showed educational institutes would do well to develop their curricula in a practical way by integration of real live cases and work together with organizations.
MULTIFILE
To facilitate energy transition, in several countries regulators have devised ‘regulatory sandboxes’ to create a participatory experimentation environment for exploring revision of energy law. These sandboxes allow for a two-way regulatory dialogue between an experimenter and an approachable regulator to innovate regulation and enable new socio-technical arrangements. However, these experiments do not take place in a vacuum but need to be formulated and implemented in a multi-actor, polycentric decision-making system through collaboration with the regulator but also energy sector incumbents such as the distribution system operator. We are, therefore, exploring new roles and power division changes in the energy sector as a result of such a regulatory sandbox. We research the Dutch Energy Experimentation Decree (EED) that invites homeowners’ associations and energy cooperatives to propose projects prohibited by extant regulation. In order to localize, democratize and decentralize energy provision, local experimenters can, for instance, organise peer-to-peer supply and determine their own tariffs for energy transport. Theoretically, we rely on Ostrom’s concept of polycentricity to study the dynamics between actors involved in and engaging with the participatory experiments. Empirically, we examine 4 approved EED experiments through interviews and document analysis. Our conclusions focus on the potential and limitations of bottom-up, participatory innovation in a polycentric system. The most important lessons are that a more holistic approach to experimentation, inter-actor alignment, providing more incentives, and expert and financial support would benefit bottom-up participatory innovation.
LINK