In my previous post on AI engineering I defined the concepts involved in this new discipline and explained that with the current state of the practice, AI engineers could also be named machine learning (ML) engineers. In this post I would like to 1) define our view on the profession of applied AI engineer and 2) present the toolbox of an AI engineer with tools, methods and techniques to defy the challenges AI engineers typically face. I end this post with a short overview of related work and future directions. Attached to it is an extensive list of references and additional reading material.
This position paper is part of a long-term research project on human-machine co-creativity with older adults. The goal is to investigate how robots and AI-generated content can contribute to older adults’ creative experiences, with a focus on collaborative drawing and painting. The research has recently started, and current activities are centred around literature studies, interviews with seniors and artists, and developing initial prototypes. In addition, a course “Drawing with Robots”, is being developed to establish collaboration between human and machine learners: older adults, artists, students, researchers, and artificial agents. We present this courseas a learning community and as an opportunity for studying how explainable AI and creative dialogues can be intertwined in human-machine co-creativity with older adults.
From diagnosis to patient scheduling, AI is increasingly being considered across different clinical applications. Despite increasingly powerful clinical AI, uptake into actual clinical workflows remains limited. One of the major challenges is developing appropriate trust with clinicians. In this paper, we investigate trust in clinical AI in a wider perspective beyond user interactions with the AI. We offer several points in the clinical AI development, usage, and monitoring process that can have a significant impact on trust. We argue that the calibration of trust in AI should go beyond explainable AI and focus on the entire process of clinical AI deployment. We illustrate our argument with case studies from practitioners implementing clinical AI in practice to show how trust can be affected by different stages in the deployment cycle.
Bedrijven, waaronder telecomproviders, vertrouwen steeds meer op complexe AI-systemen. Het gebrek aan interpreteerbaarheid dat zulke systemen vaak introduceren zorgt voor veel uitdagingen om het onderliggende besluitvormingsproces te begrijpen. Vertrouwen in AI-systemen is belangrijk omdat het bijdraagt aan acceptatie en adoptie onder gebruikers. Het vakgebied Explainable AI (XAI) speelt hierbij een cruciale rol door transparantie en uitleg aan gebruikers te bieden voor de beslissingen en werking van zulke systemen.Doel Bij AI-systemen zijn gewoonlijk verschillende stakeholders betrokken, die elk een unieke rol hebben met betrekking tot deze systemen. Als gevolg hiervan varieert de behoefte voor uitleg afhankelijk van wie het systeem gebruikt. Het primaire doel van dit onderzoek is het genereren en evalueren van op stakeholder toegesneden uitleg voor use cases in de telecomindustrie. Door best practices te identificeren, nieuwe explainability tools te ontwikkelen en deze toe te passen in verschillende use cases, is het doel om waardevolle inzichten op te doen. Resultaten Resultaten omvatten het identificeren van de huidige best practices voor het genereren van betekenisvolle uitleg en het ontwikkelen van op maat gemaakte uitleg voor belanghebbenden voor telecom use-cases. Looptijd 01 september 2023 - 30 augustus 2027 Aanpak Het onderzoek begint met een literatuurstudie, gevolgd door de identificatie van mogelijke use-cases en het in kaart brengen van de behoeften van stakeholders. Vervolgens zullen prototypes worden ontwikkeld en hun vermogen om betekenisvolle uitleg te geven, zal worden geëvalueerd.
Artificiële intelligentie (AI), en machine learning in het bijzonder, wordt meer en meer toegepast in de Nederlandse financiële sector. Uitlegbaarheid van de uitkomsten en werking van AI-toepassingen wordt daarbij gezien als een belangrijke voorwaarde om vertrouwen van consumenten en maatschappij in AI-toepassingen te borgen. Financiële dienstverleners zien dan ook het belang van uitlegbare AI maar geven aan te worstelen met de implementatie: er komt veel meer bij kijken dan in eerste instantie gedacht. Uitlegbare AI is niet louter een technisch vraagstuk, maar ook een sociaal, juridisch en ethisch vraagstuk. Dit project heeft tot doel in kaart te brengen wat er komt kijken bij de implementatie van uitlegbare AI. Dit gebeurt door use-cases van financiële dienstverleners te onderzoeken waar AI en soms ook al uitlegbare AI wordt toegepast en door literatuuronderzoek. Vervolgens wordt samen met consortium- en netwerkpartners een model ontwikkeld en gevalideerd van aspecten die van belang zijn bij de implementatie van uitlegbare AI. Het model wordt uitgewerkt in een praktisch bruikbare checklist en een wetenschappelijke publicatie. Daarnaast heeft dit project tot doel het netwerk verder uit te breiden en een aanvraag voor vervolgonderzoek te definiëren om uiteindelijk te komen tot een integrale aanpak voor uitlegbare AI.
Toepassingen gebaseerd op artificiële intelligentie (AI) worden steeds vaker ingezet voor het maken van keuzes en besluiten. Deze toepassingen worden echter ook steeds complexer. Het is in sommige gevallen niet of moeilijk na te gaan hoe een algoritme tot een besluit is gekomen. Wat de AI doet is als het ware ondoorzichtig. Dit geldt ook in de financiële sector, terwijl juist in deze sector vertrouwen een grote rol speelt. Daarom is het belangrijk dat bijvoorbeeld klanten en toezichthouders in de financiële sector een passende uitleg krijgen hoe een op AI gebaseerd besluit tot stand gekomen is. Bijvoorbeeld waarom een lening niet is toegekend of waarom een transactie is aangemerkt als mogelijk frauduleus. Uitlegbare AI (in het Engels Explainable AI ofwel XAI) is het onderzoeksveld dat streeft naar het inzichtelijk maken van ondoorzichtige AI. Dat start volgens ons met het in beeld krijgen wat voor soort uitleg in welke situatie voor welk type stakeholder vereist is bij toepassing van AI. Verder is het de vraag welke vormen van AI zich goed lenen voor uitleg, en welke XAI-oplossing het beste geschikt is om een uitleg te kunnen genereren. Wij hebben XAI gedefinieerd als een set van methoden en technieken om een stakeholder een passende uitleg te kunnen geven over het functioneren en/of de resultaten van een AI-oplossing op een zodanig manier dat die uitleg begrijpelijk is voor en tegemoet komt aan de zorgen van die stakeholder. Doel Het doel van het project is om in samenwerking met organisaties in de financiële sector praktijkgericht onderzoek te doen naar uitlegbaarheid en daarbij de randvoorwaarden van uitlegbaarheid in beeld te brengen. Dit bestaat enerzijds uit het helder krijgen van de stakeholders en welke uitleg zij verwachten en anderzijds hoe die uitleg het beste tot stand kan worden gebracht. Organisaties waarmee wordt samengewerkt zijn onder andere financiële dienstverleners en toezichthouders. Resultaten Raamwerk voor uitlegbare AI met type stakeholders en soorten uitleg voor de financiële sector. Dit raamwerk is uiteengezet in het whitepaper: XAI in the financial sector 'a conceptual framework for explainable AI'. De Hogeschool Utrecht heeft meegewerkt aan een verkennend onderzoek naar uitlegbaarheid bij AI met DNB, de AFM, de Nederlandse Vereniging van Banken en drie Nederlandse grootbanken. In dit onderzoek is het raamwerk van de Hogeschool Utrecht toegepast. Bekijk de resultaten van het onderzoek. Op basis van dit onderzoek is een paper ingediend en geaccepteerd op de 33e Benelux Conference on Artificial Intelligence. De Hogeschool Utrecht heeft samen met consortiumpartners Floryn, Researchable en de Volksbank in een eenjarig project onderzoek gedaan naar aspecten die een rol spelen bij het implementeren van explainable AI. Als resultaat van dit onderzoek is een checklist gepubliceerd en een whitepaper waarin deze checklist uitgebreid wordt toegelicht. Daarnaast is een paper ingediend bij de HHAI2023 conferentie. Meer informatie over dit project is op deze pagina te vinden. Een subsidieaanvraag voor een tweejarig RAAK-mkb project is gehonoreerd. Dit project, FIN-X geheten, heeft tot doel hulpmiddelen te ontwikkelen die interne gebruikers van AI-toepassingen meer en beter inzicht geven in de werking en uitkomsten ervan. Meer informatie over dit project is op de volgende pagina te vinden. In samenwerking met de Copenhagen Business School en het Verbond van Verzekeraars heeft de Hogeschool Utrecht in 2023 onderzoek gedaan naar de rol van explainable AI bij fraudedetectie van schadeclaims bij verzekeraars. De resultaten van het onderzoek zijn vastgelegd in dit Whitepaper. De belangrijkste conclusie uit het onderzoek is dat de implementatie van AI bij fraudedetectie een businesstransformatie is met veel ethische en organisatorische overwegingen. De uitlegbaarheid van het AI-systeem wordt als cruciaal gezien, zowel vanuit ethisch oogpunt (als onderdeel van het transparantiebeginsel), als vanuit praktisch oogpunt (als middel om vertrouwen en acceptatie te winnen van interne belanghebbenden, en voor een goede samenwerking tussen mens en machine). De praktische implementatie van explainable AI is nog steeds een punt van discussie en onderzoek in de sector. Looptijd 01 juni 2020 - 31 maart 2025 Aanpak Vanuit de Hogeschool Utrecht streven we naar praktijkgericht onderzoek en steken daarom het onderzoek naar XAI in op het niveau van use-cases. We willen per use-case in kaart brengen welke stakeholders behoefte hebben aan welke uitleg. Door deze aanpak kunnen we gericht vanuit de praktijk de link met de literatuur leggen en nieuwe inzichten rapporteren. Een voorbeeld van een use-case die wordt onderzocht is kredietverlening aan consumenten (consumptief krediet). Uiteindelijk werken we toe naar een raamwerk met bijbehorende principes en richtlijnen voor XAI toegespitst op de gehele financiële sector.” veranderen in: “Voorbeelden van use-cases die worden onderzocht zijn kredietverlening, klantacceptatie en fraudedetectie bij claimafhandeling. Uiteindelijk werken we toe naar tools voor XAI toegespitst op de gehele financiële sector. Financiële dienstverleners of andere partijen in het financiële ecosysteem die geïnteresseerd zijn in samenwerking met ons worden van harte uitgenodigd contact met ons op te nemen. Download het whitepaper whitepaper: XAI in the financial sector Gerelateerd project Dit project is gekoppeld aan het KIEM project Uitlegbare AI in de Financiële Sector, dat de opzet kan zijn voor een aanvraag voor vervolgonderzoek om uiteindelijk te komen tot een aanpak en hulpmiddelen voor uitlegbare AI.