In this manuscript we present the results of a four-year monitor among a representative panel of Dutch citizens on the knowledge, awareness and opinions regarding hydrogen. Hydrogen has the potential to play an important role in the energy transition and therefore receives a growing attention. At the start we wanted to know how the Dutch population felt upon hydrogen and its applications. By knowing how the Dutch feel about hydrogen, we could design campaigns to inform the public better and make these campaigns more tailored on the questions or worries the public has regarding hydrogen. In this contribution we present the results of these four studies.
DOCUMENT
The Power to Flex project aims to promote the development of storage possibilities from sustainable energy sources. Hydrogen is opted to be a feasible energy carrier, which can also be stored for prolonged times without further losses and can be transformed into electricity and heat when needed. Producing hydrogen from electrolysis processes has a low CO2 footprint, however the efficiency at both the system, stack and cell level still increases due to further research and development.Electrolysis is conventionally performed with direct current, of which the energy is usually supplied from the grid. Rectifiers are necessary to provide the energy source for electrolysis, which unfortunately waste some of the efficiency, albeit becoming more efficient. Although it is known that distortions, harmonics and ripple, in the current supply can cause decreased performance of the electrolysis, a fundamental understanding is often not provided in published research. Controlled modulation of the electrolysis process can however form a possibility to enhance the performance of electrolysis
DOCUMENT
From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting."
LINK
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Belangrijke uitdagingen binnen de energietransitie zijn de beschikbaarheid van waterstof uit duurzame energiebronnen als alternatief voor fossiele brandstoffen en het voorkomen van congestie op het elektriciteitsnet door toenemende vraag naar en aanbod van elektriciteit. Decentrale productie, opslag en toepassing van waterstof biedt voor beide uitdagingen een oplossing, maar om dit te realiseren zijn innovaties en kennisontwikkeling nodig. In dit RAAK MKB project willen bedrijven en kennisinstellingen als partners van het groeiende netwerk rondom waterstof innovatiecentrum H2Hub Twente, expertise ontwikkelen voor realisatie van decentrale elektrolyse systemen. De betrokken bedrijven zijn zich aan het ontwikkelen om systeemoplossingen voor de markt van decentrale elektrolyse aan te kunnen bieden, maar hebben nog stappen te maken in de benodigde expertise hiervoor. De kloof die de bedrijven in dit project willen overbruggen: van theoretisch inzicht en expertise op deelaspecten naar expertise om goed werkende systemen te kunnen realiseren en begrip krijgen van mogelijkheden voor verbeteringen en innovaties. Om die reden wordt het project vorm gegeven rondom de ontwikkeling en bouw van een prototype elektrolyse systeem dat wordt geïntegreerd met de duurzame energievoorziening van H2Hub Twente. De ontwikkeling van elektrolyse systemen (maar ook toepassingen van waterstof) vraagt om expertise op alle opleidingsniveaus die nog weinig beschikbaar is. Door de energietransitie neemt de vraag naar deze expertise sterk toe. De kennisinstellingen zijn partner binnen de SPRONG “decentrale waterstof” en zij willen met dit project via praktijkgericht onderzoek expertise binnen de betrokken onderzoekgroepen verder opbouwen. Belangrijk hierin is het leerproces structuur en borging te geven waardoor dit kan doorwerken binnen het onderwijs richting studenten en bedrijfsmedewerkers. De resultaten van dit project worden gedeeld met het netwerk maar ook via bijeenkomsten van de topsector energie en lectorenplatform LEVE. De impact van dit project: expertiseopbouw voor realisatie van decentrale waterstofsystemen als stimulans voor regionale bedrijfsontwikkeling én energietransitie!
The specific objective of HyScaling is to achieve a 25-30% cost reduction for levelized cost of hydrogen. This cost reduction will be achieved in 2030 when the HyScaling innovations have been fully implemented. HyScaling develops novel hardware (such as stacks & cell components), low-cost manufacturing processes, optimized integrated system designs and advanced operating and control strategies. In addition to the goal of accelerating implementation of hydrogen to decarbonize energy-intensive industry, HyScaling is built around industrial partners who are aiming to build a business on the HyScaling innovations. These include novel components for electrolysers (from catalysts to membranes, from electrode architectures to novel coatings) as well as electrolyser stacks and systems for different applications. For some innovations (e.g. a coating from IonBond, an electrode design from Veco) the consortium aims at starting commercialisation before the end of the program. A unique characteristic of the HyScaling program is the orientation on Use Cases. In addition to partners representing the Dutch manufacturing industry, end-users and technology providers are partner in the consortium. This enables the consortium to develop the electrolyser technology specifically for different applications. In order to be able to come to an assessment of the market for electrolysers and components, the use cases also include decentralized energy systems.Projectpartners:Nouryon, Tejin, Danieli Corus, VDL, Hauzer, VECO, lonbond, Fluor, Frames, Magneto, VONK, Borit, Delft IMP, ZEF, MTSA, SALD, Dotx control, Hydron Energy, MX, Polymers, VSL, Fraunhofer IPT, TNO, TU Delft, TU Eindhoven, ISPT, FMC.