Studying images in social media poses specific methodological challenges, which in turn have directed scholarly attention toward the computational interpretation of visual data. When analyzing large numbers of images, both traditional content analysis as well as cultural analytics have proven valuable. However, these techniques do not take into account the contextualization of images within a socio-technical environment. As the meaning of social media images is co-created by online publics, bound through networked practices, these visuals should be analyzed on the level of their networked contextualization. Although machine vision is increasingly adept at recognizing faces and features, its performance in grasping the meaning of social media images remains limited. Combining automated analyses of images with platform data opens up the possibility to study images in the context of their resonance within and across online discursive spaces. This article explores the capacities of hashtags and retweet counts to complement the automated assessment of social media images, doing justice to both the visual elements of an image and the contextual elements encoded through the hashtag practices of networked publics.
In a real-world environment a face detector can be applied to extract multiple face images from multiple video streams without constraints on pose and illumination. The extracted face images will have varying image quality and resolution. Moreover, also the detected faces will not be precisely aligned. This paper presents a new approach to on-line face identification from multiple still images obtained under such unconstrained conditions. Our method learns a sparse representation of the most discriminative descriptors of the detected face images according to their classification accuracies. On-line face recognition is supported using a single descriptor of a face image as a query. We apply our method to our newly introduced BHG descriptor, the SIFT descriptor, and the LBP descriptor, which obtain limited robustness against illumination, pose and alignment errors. Our experimental results using a video face database of pairs of unconstrained low resolution video clips of ten subjects, show that our method achieves a recognition rate of 94% with a sparse representation containing 10% of all available data, at a false acceptance rate of 4%.
Natalie Bookchin’s work is synonymous with the Video Vortex network and the rise of YouTube. Whereas we got to know each other’s work in the turbulent net.art late nineties years, this particular story started with a DVD I got from Natalie, containing The Trip (2008), a video collection of early YouTube fragments, which Natalie reassembled into an imaginary travel around the globe, shot during car trips on all continents. What has always defined Natalie Bookchin’s work is her ability to recreate unity out of dispersed fragments. We, as users, may feel lost and desperate, but the artist gives us hope again that we can overcome distraction and senseless multi-tasking by creating an all-together new meta narrative that is human—again. This is database cinema as you always imagined it, overcoming the isolation of the individualized voice-as-image while paying respect to the unique status that each of us has.
MULTIFILE
Client: Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW) Funder: RAAK (Regional Attention and Action for Knowledge circulation) The RAAK scheme is managed by the Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW). Early 2013 the Centre for Sustainable Tourism and Transport started work on the RAAK-MKB project ‘Carbon management for tour operators’ (CARMATOP). Besides NHTV, eleven Dutch SME tour operators, ANVR, HZ University of Applied Sciences, Climate Neutral Group and ECEAT initially joined this 2-year project. The consortium was later extended with IT-partner iBuildings and five more tour operators. The project goal of CARMATOP was to develop and test new knowledge about the measurement of tour package carbon footprints and translate this into a simple application which allows tour operators to integrate carbon management into their daily operations. By doing this Dutch tour operators are international frontrunners.Why address the carbon footprint of tour packages?Global tourism contribution to man-made CO2 emissions is around 5%, and all scenarios point towards rapid growth of tourism emissions, whereas a reverse development is required in order to prevent climate change exceeding ‘acceptable’ boundaries. Tour packages have a high long-haul and aviation content, and the increase of this type of travel is a major factor in tourism emission growth. Dutch tour operators recognise their responsibility, and feel the need to engage in carbon management.What is Carbon management?Carbon management is the strategic management of emissions in one’s business. This is becoming more important for businesses, also in tourism, because of several economical, societal and political developments. For tour operators some of the most important factors asking for action are increasing energy costs, international aviation policy, pressure from society to become greener, increasing demand for green trips, and the wish to obtain a green image and become a frontrunner among consumers and colleagues in doing so.NetworkProject management was in the hands of the Centre for Sustainable Tourism and Transport (CSTT) of NHTV Breda University of Applied Sciences. CSTT has 10 years’ experience in measuring tourism emissions and developing strategies to mitigate emissions, and enjoys an international reputation in this field. The ICT Associate Professorship of HZ University of Applied Sciences has longstanding expertise in linking varying databases of different organisations. Its key role in CARMATOP was to create the semantic wiki for the carbon calculator, which links touroperator input with all necessary databases on carbon emissions. Web developer ibuildings created the Graphical User Interface; the front end of the semantic wiki. ANVR, the Dutch Association of Travel Agents and Tour operators, represents 180 tour operators and 1500 retail agencies in the Netherlands, and requires all its members to meet a minimum of sustainable practices through a number of criteria. ANVR’s role was in dissemination, networking and ensuring CARMATOP products will last. Climate Neutral Group’s experience with sustainable entrepreneurship and knowledge about carbon footprint (mitigation), and ECEAT’s broad sustainable tourism network, provided further essential inputs for CARMATOP. Finally, most of the eleven tour operators are sustainable tourism frontrunners in the Netherlands, and are the driving forces behind this project.
About half of the e-waste generated in The Netherlands is properly documented and collected (184kT in 2018). The amount of PCBs in this waste is projected to be about 7kT in 2018 with a growth rate of 3-4%. Studies indicate that a third of the weight of a PCB is made or recoverable and critical metals which we need as resources for the various societal challenges facing us in the future. Recycling a waste PCB today means first shredding it and then processing it for material recovery mostly via non-selective pyrometallurgical methods. Sorting the PCBs in quality grades (wastebins) before shredding would however lead to more flexibility in selecting when and which recovery metallurgy is to be used. The yield and diversity of the recovered metals increases as a result, especially when high-grade recycling techniques are used. Unfortunately, the sorting of waste PCBs is not easily automated as an experienced operator eye is needed to classify the very inhomogeneous waste-PCB stream in wastebins. In this project, a knowledge institution partners with an e-waste processor, a high-grade recycling technology startup and a developer of waste sorting systems to investigate the efficiency of methods for sensory sorting of waste PCBs. The knowledge gained in this project will lead towards a waste PCB sorting demonstrator as a follow-up project.