Inaugural lecture as Lector Precision Livestock Farming at HAS University of Applied Sciences on October 14, 2016. PLF, Precision Livestock Farming, uses technologies to continuously monitor animal behaviour, animal health, production and environmental impact.
DOCUMENT
Lector Precision Livestock Farming, Lenny van Erp, neemt je in deze rondleiding mee langs een aantal onderzoeken die het lectoraat in studiejaar 2019/2020 heeft uitgevoerd met onze afstuderende studenten. Je wandelt digitaal langs onder meer de onderzoekslijnen melkvee, pluimvee, varkens en gezelschapsdieren en paarden. De onderzoeken gaan over nieuwe sensoren, nieuwe technologieën en data om meer te kunnen zeggen over gedrag, gezondheid en welzijn van de dieren.
LINK
Control methods are applied worldwide to reduce predation on livestock by European red foxes (Vulpes vulpes). Lethal methods can inflict suffering; however, moral debate about their use is lacking. Non-lethal methods can also inflict suffering and can unintentionally lead to death, and yet both the welfare consequences and ethical perspectives regarding their use are rarely discussed. The aim of this study was to investigate the animal welfare consequences, the level of humaneness, the ethical considerations and the moral implications of the global use of fox control methods according to Tom Regan’s animal rights view and Peter Singer’s utilitarian view. According to Regan, foxes ought not to be controlled by either lethal or potentially harmful non-lethal methods because this violates the right of foxes not to be harmed or killed. According to Singer, if an action maximises happiness or the satisfaction of preferences over unhappiness or suffering, then the action is justified. Therefore, if and only if the use of fox control methods can prevent suffering and death in livestock in a manner that outweighs comparable suffering and death in foxes is one morally obligated t
MULTIFILE
In 1990, livestock grazing was introduced in Meijendel, a 1800 ha lime-rich coastal dune area, at a density of 0.06–0.07 LLU.ha-1.year−1 (1:12–18 ha) to counteract encroachment of tall grasses and shrubland on dune grassland and increase the bare sand area. Monitoring was based on four digital orthophotos (1975–1990–2001-2009) with a high spatial resolution (pixel size 25 × 25 cm). The changes were tested using Generalized Estimating Equations. Habitat changes occurred, but contradicting our hypothesis, there was no significant impact from the grazing on bare sand, grassland or shrubland within 11 and 19 years post livestock introduction. (1) After several decennia of decreasing bare sand, there was a significant increase between 2001 and 2009, irrespective of livestock presence. (2) The changes in grasslands and shrublands are independent of the livestock, but dependent on distance to the coast. (3) Bare sand and shrub cover determine the space left for the dune grasslands. It appears other factors than livestock grazing must have induced the changes. Changes in climate conditions and nitrogen load might have stimulated bare sand. An interaction with the end of Marram planting in 1990 cannot be concluded from available data. The disease-led reduction of rabbit grazing from the mid-1950s led to an expansion of the dominant shrub Hippophae rhamnoides. However, Hippophae shrubland typically regresses to grasslands on its collapse after 25–40 years. Tree species like Crataegus, Betula and Quercus will gradually dominate the landscape for far longer. Active removal of these indigenous species is necessary to prevent future loss of dune grasslands.
LINK
The main objectives of this review were to: (1) review different methods/techniques to assess gaseous N-losses from manure (2) review N-gaps, attributed to dinitrogen loss as the difference between directly measured N compounds summed as total N loss and indirectly measured N loss through a mass balance in livestock manure systems, and (3) provide approaches to close the N-gap. In literature, N-gaps run up to 80% of total N loss, this undermines N emission assessments and leaves a huge part of the emission unexplained. However, studies that measure N-gaps are scarcely available or are limited in their evaluation, hence more study is needed. Three approaches are introduced to research N-gaps: (1) measure N2 through a suggested Gas Flow Soil Core (GFSC) technique and compare the sum of all measured N losses with the indirect method, (2) assume N2 loss as being the N-gap and (3) include N2 as an estimate based on ratios from literature. In a hypothetical example for poultry manure, assumed values for measurement error of 50% and variance due to physical differences between the experimental units of 50% led to a total standard deviation of 131% in the N-gap. Variance of N-gap was reduced with 80% point when assuming 16 vessels compared to single vessel. Using literature-based-ratios to estimate losses of N compounds led to variation of N-gap from 0.06% initial N overestimation to 26% of initial N underestimation. Future research should address this variance and apply methods to measure N2 to close N-gaps.
LINK
Animal welfare is a multidimensional phenomenon and currently its on-farm assessment requires complex, multidimensional frameworks involving farm audits which are time-consuming, infrequent and expensive. The core principle of precision agriculture is to use sensor technologies to improve the efficiency of resource use by targeting resources to where they give a benefit. Precision livestock farming (PLF) enables farm animal management to move away from the group level to monitoring and managing individual animals. A range of precision livestock monitoring and control technologies have been developed, primarily to improve livestock production efficiency. Examples include using camera systems monitoring the movement of housed broiler chickens to detect problems with feeding systems or disease and leg-mounted accelerometers enabling the detection of the early stages of lameness in dairy cows. These systems are already improving farm animal welfare by, for example, improving the detection of health issues enabling more rapid treatment, or the detection of problems with feeding systems helping to reduce the risk of hunger. Environmental monitoring and control in buildings can improve animal comfort, and automatic milking systems facilitate animal choice and improve human-animal interactions. Although these precision livestock technologies monitor some parameters relevant to farm animal welfare (e.g. feeding, health), none of the systems yet provide the broad, multidimensional integration that is required to give a complete assessment of an animal’s welfare. However, data from PLF sensors could potentially be integrated into automated animal welfare assessment systems, although further research is needed to define and validate this approach.
DOCUMENT
Inaugurele rede als Lector Precision Livestock Farming bij HAS hogeschool op 14 oktober 2016. PLF, in het Nederlands Precisielandbouw in de veehouderij, maakt gebruik van technologieën om diergedrag, diergezondheid, productie en milieubelasting continu te monitoren.
DOCUMENT
The Netherlands has always played a pioneering role in livestock and arable farming innovations. There is currently a lot of interest in our country for 'climate-smart' solutions, with closed-loop agriculture being an excellent example.
DOCUMENT
We gebruiken steeds meer technologie om gezond te blijven, bijvoorbeeld stappen-, glucose- en hartslagmeters. Maar ook de koe kan wat aan zijn gezondheid doen. In de veehouderij gebruiken koeien allerlei slimme technologie. Wat moet een koe met een stappenteller? Lenny van Erp (lector Precision livestock Farming bij HAS hogeschool) licht het gebruik van een stappenteller bij rundvee toe.
LINK
Is de Nederlandse melkveehouder klaar om met sensordata aan de slag te gaan? Die vraag is meerdere malen gesteld tijdens de themamiddag 'Blij met sensoren in de wei' op de Dairy Campus, georganiseerd door hogeschool Van Hall Larenstein, Wageningen Livestock Research en het project 4DF4. Een eenduidige conclusie is er niet. Wel is duidelijk dat de sensoren in de wei van onmisbare waarde kunnen zijn.
DOCUMENT