In this report, the details of an investigation into the eect of the low induction wind turbines on the Levelised Cost of Electricity (LCoE) in a 1GW oshore wind farm is outlined. The 10 MW INNWIND.EU conventional wind turbine and its low induction variant, the 10 MW AVATAR wind turbine, are considered in a variety of 10x10 layout configurations. The Annual Energy Production (AEP) and cost of electrical infrastructure were determined using two in-house ECN software tools, namely FarmFlow and EEFarm II. Combining this information with a generalised cost model, the LCoE from these layouts were determined. The optimum LCoE for the AVATAR wind farm was determined to be 92.15 e/MWh while for the INNWIND.EU wind farm it was 93.85 e/MWh. Although the low induction wind farm oered a marginally lower LCoE, it should not be considered as definitive due to simple nature of the cost model used. The results do indicate that the AVATAR wind farms require less space to achieve this similar cost performace, with a higher optimal wind farm power density (WFPD) of 3.7 MW/km2 compared to 3 MW/km2 for the INNWIND.EU based wind farm.
DOCUMENT
Within the context of the Iliad project, the authors present technical challenges and the first results of having valid 3D scenes of (non-)existing offshore wind farms procedurally and automatically generated within either the Unreal or Unity game engine. The Iliad – Digital Twins of the Ocean project (EU Horizon 2020) aims to develop a ‘system of systems’ for creating cutting-edge digital twins of specific sea and ocean areas for diverse purposes related to their sustainable use and protection. One of the Iliad pilots addresses the topic of offshore floating wind farm construction or maintenance scenario testing and validation using the Unity 3D game engine. This work will speed up the development of these scenarios by procedurally and automatically creating the Unity 3D scene rather than manually (which is done at present). The main technical challenges concern the data-driven approach, in which a JSON configuration file drives the scene creation. The first results show a base wind farm running in Unreal 5.1. The final product will be able to handle environmental conditions, biological conditions, and specific human activities as input parameters.
DOCUMENT
Airborne wind energy (AWE) is an emerging renewable energy technology that uses kites to harvest winds at higher altitudes than wind turbines. Understanding how residents experience a local AWE system (AWES) is important as the technology approaches commercialization. Such knowledge can help adjust the design and deployment of an AWES to fit locals' needs better, thereby decreasing the technology's burden on people. Although the AWE literature claims that the technology affects nature and residents less than wind turbines, empirical evidence has been lacking. This first community acceptance study recruited residents within a 3.5 km radius of an AWE test site in Northern Germany. Using structured questionnaires, 54 residents rated the AWES and the closest wind farm on visual, sound, safety, siting, environmental, and ecological aspects. Contrary to the literature's claims, residents assessed the noise, ecological, and safety impacts similarly for the AWES and the wind farm. Only visual impacts were rated better for the AWES (e.g., no shadows were perceived). Consistent with research on wind turbines, residents who rated the site operation as fairer and the developer as more transparent tended to have more positive attitudes towards the AWES and to experience less noise annoyance. Consequently, recommendations for the AWE industry and policymakers include mitigating technology impacts and implementing evidence-based strategies to ensure just and effective project development. The findings are limited to one specific AWES using soft-wing kites. Future research should assess community responses across regions and different types of AWESs to test the findings' generalizability.
MULTIFILE
With the effects of climate change linked to the use of fossil fuels, as well as the prospect of their eventual depletion, becoming more noticeable, political establishment and society appear ready to switch towards using renewable energy. Solar power and wind power are considered to be the most significant source of global low-carbon energy supply. Wind energy continues to expand as it becomes cheaper and more technologically advanced. Yet, despite these expectations and developments, fossil fuels still comprise nine-tenths of the global commercial energy supply. In this article, the history, technology, and politics involved in the production and barriers to acceptance of wind energy will be explored. The central question is why, despite the problems associated with the use of fossil fuels, carbon dependency has not yet given way to the more ecologically benign forms of energy. Having briefly surveyed some literature on the role of political and corporate stakeholders, as well as theories relating to sociological and psychological factors responsible for the grassroots’ resistance (“not in my backyard” or NIMBYs) to renewable energy, the findings indicate that motivation for opposition to wind power varies. While the grassroots resistance is often fueled by the mistrust of the government, the governments’ reason for resisting renewable energy can be explained by their history of a close relationship with the industrial partners. This article develops an argument that understanding of various motivations for resistance at different stakeholder levels opens up space for better strategies for a successful energy transition. https://doi.org/10.30560/sdr.v1n1p11 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Digital Twins of the Ocean (DTOs) are increasingly used in Maritime Spatial Planning (MSP), yet most remain limited to 2D representations and offer minimal stakeholder interactivity. These limitations reduce their effectiveness in capturing complex socio-ecological-technical dynamics and supporting exploratory what-if scenario planning in a 3D or 4D ocean space. This paper presents Immersive Ocean, a novel Virtual Twin platform developed within EU-ILIAD DTO initiative. Built with game engine and VR technologies, it supports procedural 3D world generation and interactive exploration in both desktop and immersive VR modes. Systematic performance validation demonstrated stable frame rates across both PC and VR platforms. Initial user evaluations (n=22) report high usability and engagement but also suggest areas for improvement in UI clarity and ecological model representation. These initial findings position Immersive Ocean as a promising Virtual Twin solution for an immersive, interactive, and data-integrated approach to MSP and ocean governance. Immersive Ocean is now being piloted with stakeholders in real-world MSP scenarios, including offshore wind farm planning.
DOCUMENT
This article addresses European energy policy through conventional and transformative sustainability approaches. The reader is guided towards an understanding of different renewable energy options that are available on the policy making table and how the policy choices have been shaped. In arguing that so far, European energy policy has been guided by conventional sustainability framework that focuses on eco-efficiency and ‘energy mix’, this article proposes greater reliance on circular economy (CE) and Cradle to Cradle (C2C) frameworks. Exploring the current European reliance on biofuels as a source of renewable energy, this article will provide recommendations for transition to transformative energy choices. http://dx.doi.org/10.13135/2384-8677/2331 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Bij het onderzoek naar mogelijke effecten van een windmolenpark in het IJsselmeer is ETFI uitgegaan van de vele onderzoeken die er inmiddels, in Nederland maar ook internationaal, bestaan. Op deze manier zijn conclusies en oordelen, zowel geïnspireerd door voorvechters van windenergie als van tegenstanders, zowel bij geplande als bij reeds aangelegde windmolenparken, geïnventariseerd. De conclusie van dit literatuuronderzoek luidt dat de studies onvoldoende bewijs leveren, zowel voor het ontstaan van schade aan de toeristische sector als voor het ontbreken van die schade. Dit onderzoek moet dan ook niet gelezen worden als een aanbeveling vóór of tegen windmolenparken. De waarde van het onderzoek is dat het de publiek toegankelijke studies uit binnen en buitenland met betrekking tot de relatie tussen windparken en toerisme bijeen brengt en systematisch analyseert. Zodoende brengt het de risico’s en mogelijkheden beter in beeld zodat in alle scenario’s —met of zonder windmolens— afwegingen gemaakt kunnen worden waarin alle belangen gerespecteerd worden.
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
This article aims to supplement the three “golden rules” of rewilding – or three Cs – the Cores, Carnivores, and Corridors – by a fourth C – Compassion, in discussing the case of Oostvaardeplassen in The Netherlands. The cores refer to large, strictly protected ecologically intact areas, carnivores refer to natural predators, and corridors connect passages for fauna movements. We propose a fourth requirement: Compassion. This fourth C would ensure that any active (re)introduction must be in the interests of the individual animals involved. This article briefly explains the history of the Oostvaardeplassen project and leads into a discussion of the scientific (biological requirements of the species, area, and species fit, etc. ) and ethical (animal welfare, ecocentrism, etc.) constraints and opportunities for rewilding. All four Cs, we argue, are absent from Oostvaardeplassen, which can be considered an example of how rewilding should not be undertaken. Against this background, we propose an alternative way forward. https://www.ecos.org.uk/ecos-406-the-golden-rules-of-rewilding-examining-the-case-of-oostvaardersplassen/ LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE