Purpose: To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. Methods: Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. Results: Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). Conclusions: This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
DOCUMENT
Journal of Physics: Conference Series Paper • The following article is Open access Exploring the relationship between light and subjective alertness using personal lighting conditions J. van Duijnhoven1, M.P.J. Aarts1, E.R. van den Heuvel2 and H.S.M. Kort3,4 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 2042, CISBAT 2021 Carbon-neutral cities - energy efficiency and renewables in the digital era 8-10 September 2021, EPFL Lausanne, Switzerland Citation J. van Duijnhoven et al 2021 J. Phys.: Conf. Ser. 2042 012119 Download Article PDF References Download PDF 29 Total downloads Turn on MathJax Share this article Share this content via email Share on Facebook (opens new window) Share on Twitter (opens new window) Share on Mendeley (opens new window) Hide article information Author e-mails j.v.duijnhoven1@tue.nl Author affiliations 1 Building Lighting Group, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands 2 Stochastics, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands 3 Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands 4 Building Healthy Environments for Future Users Group, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands DOI https://doi.org/10.1088/1742-6596/2042/1/012119 Buy this article in print Journal RSS Sign up for new issue notifications Create citation alert Abstract The discovery of the ipRGCs was thought to fully explain the mechanism behind the relationship between light and effects beyond vision such as alertness. However, this relationship turned out to be more complicated. The current paper describes, by using personal lighting conditions in a field study, further exploration of the relationship between light and subjective alertness during daytime. Findings show that this relationship is highly dependent on the individual. Although nearly all dose-response curves between personal lighting conditions and subjective alertness determined in this study turned out to be not significant, the results may be of high importance in the exploration of the exact relationship.
MULTIFILE
Daylight has been associated with multiple health advantages. Some of these claims are associations, hypotheses or beliefs. This review presents an overview of a scientific literature search on the proven effects of daylight exposure on human health. Studies were identified with a search strategy across two main databases. Additionally, a search was performed based on specific health effects. The results are diverse and either physiological or psychological. A rather limited statistically significant and well-documented scientific proof for the association between daylight and its potential health consequences was found. However, the search based on specific health terms made it possible to create a first subdivision of associations with daylight, leading to the first practical implementations for building design.
DOCUMENT
Daylight has been associated with multiple health advantages. Some of these claims are associations, hypotheses or beliefs. This review presents an overview of a scientific literature search on the proven effects of daylight exposure on human health. Studies were identified with a search strategy across two main databases. Additionally, a search was performed based on specific health effects. The results are diverse and either physiological or psychological. A rather limited statistically significant and well-documented scientific proof for the association between daylight and its potential health consequences was found. However, the search based on specific health terms made it possible to create a first subdivision of associations with daylight, leading to the first practical implementations for building design.
DOCUMENT
Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health. However, comprehensive protocols capturing environmental (e.g., geographical location, season, climate, photoperiod) and individual factors (e.g., culture, personal habits, behaviour, commute type, profession) contributing to the measured light exposure are currently lacking. Here, we present a protocol that combines smartphone-based experience sampling (experience sampling implementing Karolinska Sleepiness Scale, KSS ratings) and high-quality light exposure data collection at three body sites (near-corneal plane between the two eyes mounted on spectacle, neck-worn pendant/badge, and wrist-worn watch-like design) to capture daily factors related to individuals’ light exposure. We will implement the protocol in an international multi-centre study to investigate the environmental and socio-cultural factors influencing light exposure patterns in Germany, Ghana, Netherlands, Spain, Sweden, and Turkey (minimum n = 15, target n = 30 per site, minimum n = 90, target n = 180 across all sites). With the resulting dataset, lifestyle and context-specific factors that contribute to healthy light exposure will be identified. This information is essential in designing effective public health interventions.
MULTIFILE
Purpose:The International Commission on Illumination (CIE) recommends researchers to investigate a widevariety of behavioural and health outcomes. However, researchers often investigate only a part of occupationalhealth (OH) in relation to light. A literature study (2002–2017) regarding the relationship between office lightingconditions and OH was performed to identify gaps and methodological issues.Method:The OH outcomes investigated in this paper were grouped according to the International Classificationof Diseases and analysed per category: physical and physiological health, mental health, eye health, sleep param-eters and visual comfort.Results:Findings from the literature study (20 eligible papers) showed that all OH aspects were mostly but notexclusively measured subjectively. Furthermore, most studies investigated only a fraction of office lighting par-ameters and OH aspects.Conclusions:It seems that Correlated Colour Temperature (CCT) and illuminance mainly correlate with OH.However, this may also be explained by gaps and methodological issues in studies described in eligible papers.Based on the literature study, an overview was composed elucidating gaps and methodological issues of officelighting and OH studies. It can be used to design and target the purpose of light and health research.
DOCUMENT
Light therapy is increasingly administered and studied as a non-pharmacologic treatment for a variety of healthrelated problems, including treatment of people with dementia. Light therapy comes in a variety of ways, ranging from being exposed to daylight, to being exposed to light emitted by light boxes and ambient bright light. Light therapy is an area in medicine where medical sciences meet the realms of physics, engineering and technology. Therefore, it is paramount that attention is paid in the methodology of studies to the technical aspects in their full breadth. This paper provides an extensive introduction for non-technical researchers on how to describe and adjust their methodology when involved in lighting therapy research. A specific focus in this manuscript is on ambient bright light, as it is an emerging field within the domain of light therapy. The paper deals with how to (i) describe the lighting equipment, (ii) describe the light measurements, (iii) describe the building and interaction with daylight. Moreover, attention is paid to the uncertainty in standards and guidelines regarding light and lighting for older adults.
DOCUMENT
Studies among people with dementia demonstrated that the sleep quality and rhythm improves significantly when people are exposed to ambient bright light. Since almost half of the healthy older people also indicate to suffer from chronic sleep disorders, the question arises whether ambient bright light can be beneficial to healthy older people. Particularly the effect on sleep/wake rhythm in relation to the exposure to natural light is the focus. It was hypothesised that the sleep quality would be worse in winter due to a lower daylight dose than in summer due to the lower illuminance and exposure duration. A field study was conducted to examine the relationship between daylight exposure and sleep quality in 14 healthy older adults living independently in their own dwellings in the Netherlands. All participants were asked to take part of the study both during the summer period as well as during the winter period. Therefore, they had to wear an actigraph for five consecutive days which measured sleep, activity and light exposure. Results confirmed that people were significantly longer exposed to high illumination levels (>1000 lx) in summer than in winter. Sleep quality measures, however, did not differ significantly between summer and winter. A significant, positive correlation was found between exposure duration to high illuminance from daylight during the day and the sleep efficiency the following night in summer, implying that being exposed to high illuminance for a longer time period has a positive effect on sleep efficiency for the individual data. There was also a tendency of less frequent napping in case of longer exposure duration to light for both seasons. Sleep quality does not differ between summer and winter but is related to the duration of the exposure to bright light the day prior to the night. CC-BY Original article at http://solarlits.com/jd/5-14 http://dx.doi.org/10.15627/jd.2018.2 https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat
MULTIFILE